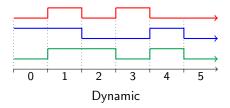
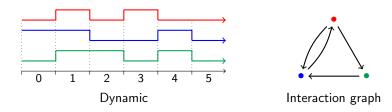
# Fixed points and feedback cycles in Boolean networks

# Adrien Richard CNRS & Université Côte d'Azur, France

IWBN 2020 Satellite School, January 2020, Concepción, Chile

Adrien Richard



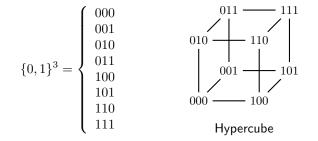


2/56

- $\hookrightarrow$  The variables/components are indexed from 1 to n.
- $\hookrightarrow$  The set of possible <code>states/configurations</code> is  $\{0,1\}^n$ ,

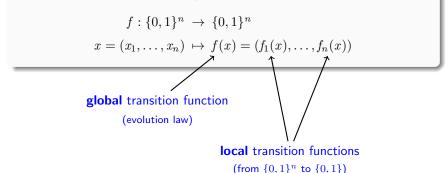
 $\hookrightarrow$  The variables/components are indexed from 1 to *n*.  $\hookrightarrow$  The set of possible states/configurations is  $\{0, 1\}^n$ ,

#### **Example** with n = 3



2/56

$$f: \{0,1\}^n \to \{0,1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$



$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

The **dynamic** is given by the successive iterations of f:

$$x \to f(x) \to f^2(x) \to f^3(x) \to \cdots$$

$$f: \{0, 1\}^n \to \{0, 1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

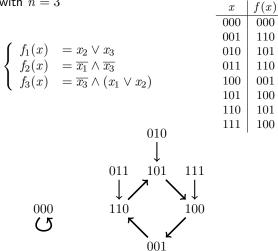
The **dynamic** is given by the successive iterations of f:

$$x \to f(x) \to f^2(x) \to f^3(x) \to \cdots$$

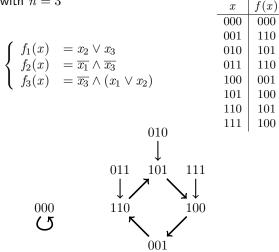
A fixed point is a configuration x such that x = f(x).

fixed points = stable states

#### **Example 1** with n = 3

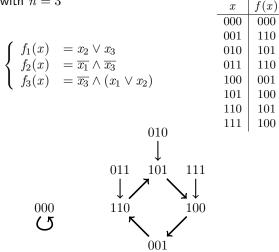


#### **Example 1** with n = 3



**Exercise** : What is the nb of BNs with *n* components?

#### **Example 1** with n = 3



**Exercise** : What is the nb of BNs with n components ?  $\rightarrow (2^n)^{(2^n)} = 2^{n2^n}$ 

The signed interaction graph of f is the signed digraph G defined by :

- the set of vertices is  $\{1,\ldots,n\}$
- there is a positive arc  $j \rightarrow i$  if there is  $x \in \{0,1\}^n$  such that

$$f_i(x_1,...,x_{j-1},0,x_{j+1},...,x_n) = 0$$
  
$$f_i(x_1,...,x_{j-1},1,x_{j+1},...,x_n) = 1$$

- there is a negative arc  $j \rightarrow i$  if there is  $x \in \{0,1\}^n$  such that

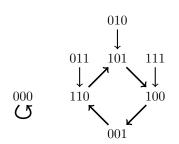
$$f_i(x_1, \dots, x_{j-1}, \mathbf{0}, x_{j+1}, \dots, x_n) = \mathbf{1}$$
  
$$f_i(x_1, \dots, x_{j-1}, \mathbf{1}, x_{j+1}, \dots, x_n) = \mathbf{0}$$

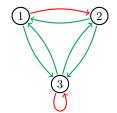
5/56

| ſ | $f_1(x)$                     | $= x_2 \lor x_3$                     |
|---|------------------------------|--------------------------------------|
| ł | $f_1(x) \\ f_2(x) \\ f_3(x)$ | $=\overline{x_1}\wedge x_3$          |
| l | $f_3(x)$                     | $=\overline{x_3}\wedge(x_1\vee x_2)$ |

| x   | f(x) |
|-----|------|
| 000 | 000  |
| 001 | 110  |
| 010 | 101  |
| 011 | 110  |
| 100 | 001  |
| 101 | 100  |
| 110 | 101  |
| 111 | 100  |

Dynamic

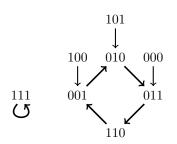


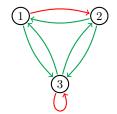


| ſ | $f_1(x)$ | $= x_2 \wedge x_3$                   |
|---|----------|--------------------------------------|
| { | $f_2(x)$ | $=\overline{x_1}\vee x_3$            |
| l | $f_3(x)$ | $=\overline{x_3}\vee(x_1\wedge x_2)$ |

| x   | f(x) |
|-----|------|
| 000 | 011  |
| 001 | 010  |
| 010 | 011  |
| 011 | 110  |
| 100 | 001  |
| 101 | 010  |
| 110 | 001  |
| 111 | 111  |

Dynamic

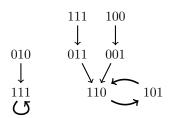


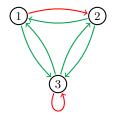


| ſ | $f_1(x)$                                        | $= x_2 \lor x_3$                     |
|---|-------------------------------------------------|--------------------------------------|
| ł | $\begin{array}{c} f_2(x) \\ f_3(x) \end{array}$ | $=\overline{x_1}\vee x_3$            |
| l | $f_3(x)$                                        | $=\overline{x_3}\vee(x_1\wedge x_2)$ |

| x   | f(x) |
|-----|------|
| 000 | 011  |
| 001 | 110  |
| 010 | 111  |
| 011 | 110  |
| 100 | 001  |
| 101 | 110  |
| 110 | 101  |
| 111 | 111  |

# Dynamic

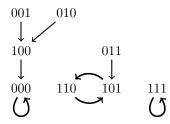


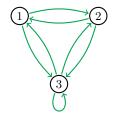


| Į | $f_1(x) \\ f_2(x) \\ f_3(x)$ | $= x_2 \lor x_3$ $= x_1 \land x_3$ |
|---|------------------------------|------------------------------------|
| l | $f_3(x)$                     | $= x_3 \wedge (x_1 \vee x_2)$      |

| x   | f(x) |
|-----|------|
| 000 | 000  |
| 001 | 100  |
| 010 | 100  |
| 011 | 101  |
| 100 | 000  |
| 101 | 110  |
| 110 | 101  |
| 111 | 111  |

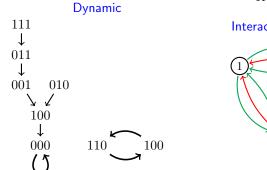
#### Dynamic





| ſ | $f_1(x)$                     | $= x_2 + x_3$                |
|---|------------------------------|------------------------------|
| ł | $f_2(x)$                     | $= x_1 \wedge x_3$           |
| l | $f_1(x) \\ f_2(x) \\ f_3(x)$ | $= x_3 \land (x_1 \lor x_2)$ |

| x   | f(x) |
|-----|------|
| 000 | 000  |
| 001 | 100  |
| 010 | 100  |
| 011 | 001  |
| 100 | 000  |
| 101 | 110  |
| 110 | 101  |
| 111 | 011  |



#### Interaction graph

2



3

| ſ | $f_1(x)$                     | $= x_2 + x_3$                |
|---|------------------------------|------------------------------|
| ł | $f_2(x)$                     | $= x_1 \wedge x_3$           |
| l | $f_1(x) \\ f_2(x) \\ f_3(x)$ | $= x_3 \land (x_1 \lor x_2)$ |

| x   | f(x) |
|-----|------|
| 000 | 000  |
| 001 | 100  |
| 010 | 100  |
| 011 | 001  |
| 100 | 000  |
| 101 | 110  |
| 110 | 101  |
| 111 | 011  |

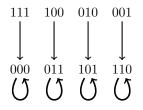


Interaction graph

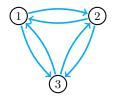
2

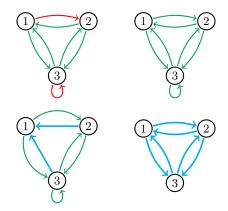
| $\int f_1(x)$                      | $= x_2 + x_3$ |
|------------------------------------|---------------|
| $\begin{cases} f_2(x) \end{cases}$ | $= x_3 + x_1$ |
| $\int f_3(x)$                      | $= x_1 + x_2$ |

#### Dynamic

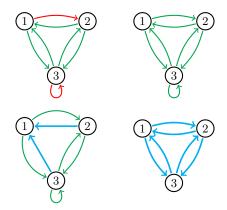


| x   | $\int f(x)$ |  |  |
|-----|-------------|--|--|
| 000 | 000         |  |  |
| 001 | 110         |  |  |
| 010 | 101         |  |  |
| 011 | 011         |  |  |
| 100 | 011         |  |  |
| 101 | 101         |  |  |
| 110 | 110         |  |  |
| 111 | 000         |  |  |
|     |             |  |  |





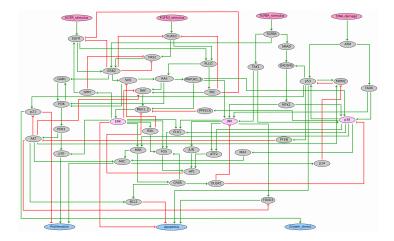
**Exercise :** What is the nb of signed digraphs with n vertices?



**Exercise :** What is the nb of signed digraphs with n vertices?  $\rightarrow 4^{n^2}$ .

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

# In the context of gene networks, the first reliable informations often concern the interaction graph



13/56

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

# Question

1. What can be said on the **dynamic** of a Boolean network according to its **interaction graph** only?

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

# Question

1. What can be said on the **dynamic** of a Boolean network according to its **interaction graph** only?

# **Difficult question**

 $\hookrightarrow$  the nb of BNs on a given interaction graph G is (generally) **HUGE**.

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

#### Question

1. What can be said on the **dynamic** of a Boolean network according to its **interaction graph** only?

# **Difficult question**

 $\hookrightarrow$  the nb of BNs on a given interaction graph G is (generally) **HUGE**.

 $\hookrightarrow \mathbf{2}^{n\mathbf{2}^n}$  Boolean networks with n components

13/56

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

#### Question

1. What can be said on the **dynamic** of a Boolean network according to its **interaction graph** only?

# **Difficult question**

 $\hookrightarrow$  the nb of BNs on a given interaction graph G is (generally) **HUGE**.

- $\hookrightarrow \mathbf{2}^{n\mathbf{2}^n}$  Boolean networks with n components
- $\hookrightarrow 4^{n^2}$  interaction graphs with n vertices

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

# Question

1. What can be said on the **dynamic** of a Boolean network according to its **interaction graph** only?

# **Difficult question**

 $\hookrightarrow$  the nb of BNs on a given interaction graph G is (generally) **HUGE**.

- $\hookrightarrow \mathbf{2}^{n\mathbf{2}^n}$  Boolean networks with n components
- $\hookrightarrow 4^{n^2}$  interaction graphs with n vertices

 $\hookrightarrow$  the nb of BNs on a *random* interaction graph G is **doubly exponential**.

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

# Question

- 1. What can be said on the **dynamic** of a Boolean network according to its **interaction graph** only?
- 2. What can be said on the **nb of fixed points** of a Boolean network according to its **interaction graph** only?

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

#### Question

- 1. What can be said on the **dynamic** of a Boolean network according to its **interaction graph** only?
- 2. What can be said on the **nb of fixed points** of a Boolean network according to its **interaction graph** only?

Number of fixed points in the gene network of a multicellular organism

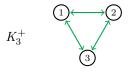
Number of cellular types in the organism

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

$$K_3^+$$
  $(1 \leftrightarrow 2)$   
 $(3)$ 

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G



There are 8 possibles BNs on  $K_3^+$ , since

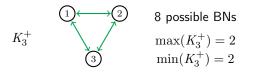
$$f_1(x) = x_2 \wedge x_3 \quad \text{or} \quad f_1(x) = x_3 \vee x_3$$
$$f_2(x) = x_1 \wedge x_3 \quad \text{or} \quad f_2(x) = x_1 \vee x_3$$
$$f_3(x) = x_1 \wedge x_2 \quad \text{or} \quad f_3(x) = x_1 \vee x_2$$

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

$$K_3^+$$
  $(1) \longleftrightarrow (2)$   
 $(3)$ 

| x   | f(x) | $\int f(x)$ | f(x) | f(x) | f(x) | f(x) | f(x) | f(x) |
|-----|------|-------------|------|------|------|------|------|------|
| 000 | 000  | 000         | 000  | 000  | 000  | 000  | 000  | 000  |
| 001 | 000  | 100         | 010  | 110  | 000  | 100  | 010  | 110  |
| 010 | 000  | 100         | 000  | 100  | 001  | 101  | 001  | 101  |
| 011 | 100  | 100         | 110  | 110  | 101  | 101  | 111  | 111  |
| 100 | 000  | 000         | 010  | 010  | 001  | 001  | 011  | 011  |
| 101 | 010  | 110         | 010  | 110  | 011  | 111  | 011  | 111  |
| 110 | 001  | 101         | 011  | 111  | 001  | 101  | 011  | 111  |
| 111 | 111  | 111         | 111  | 111  | 111  | 111  | 111  | 111  |

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

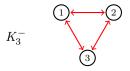


| x   | f(x) |
|-----|------|------|------|------|------|------|------|------|
| 000 | 000  | 000  | 000  | 000  | 000  | 000  | 000  | 000  |
| 001 | 000  | 100  | 010  | 110  | 000  | 100  | 010  | 110  |
| 010 | 000  | 100  | 000  | 100  | 001  | 101  | 001  | 101  |
| 011 | 100  | 100  | 110  | 110  | 101  | 101  | 111  | 111  |
| 100 | 000  | 000  | 010  | 010  | 001  | 001  | 011  | 011  |
| 101 | 010  | 110  | 010  | 110  | 011  | 111  | 011  | 111  |
| 110 | 001  | 101  | 011  | 111  | 001  | 101  | 011  | 111  |
| 111 | 111  | 111  | 111  | 111  | 111  | 111  | 111  | 111  |

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

$$K_3^ (1 \leftrightarrow 2)$$
  
 $(3)$ 

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G



There are 8 possible BNs on  $K_3^-$ , since

$$f_1(x) = \overline{x_2} \wedge \overline{x_3} \quad \text{or} \quad f_1(x) = \overline{x_3} \vee \overline{x_3}$$
$$f_2(x) = \overline{x_1} \wedge \overline{x_3} \quad \text{or} \quad f_2(x) = \overline{x_1} \vee \overline{x_3}$$
$$f_3(x) = \overline{x_1} \wedge \overline{x_2} \quad \text{or} \quad f_3(x) = \overline{x_1} \vee \overline{x_2}$$

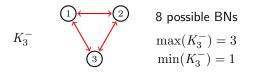
Adrien Richard

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G

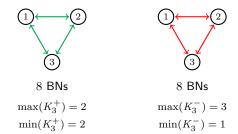
$$K_3^ (1) \leftrightarrow (2)$$
  
 $(3)$ 

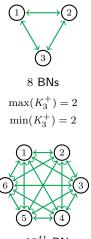
| x   | f(x) |
|-----|------|------|------|------|------|------|------|------|
| 000 | 111  | 111  | 111  | 111  | 111  | 111  | 111  | 111  |
| 001 | 001  | 101  | 011  | 111  | 001  | 101  | 011  | 111  |
| 010 | 010  | 110  | 010  | 110  | 011  | 111  | 011  | 111  |
| 011 | 000  | 000  | 010  | 010  | 001  | 001  | 011  | 011  |
| 100 | 100  | 100  | 110  | 110  | 101  | 101  | 111  | 111  |
| 101 | 000  | 100  | 000  | 100  | 001  | 101  | 001  | 101  |
| 110 | 000  | 100  | 010  | 110  | 000  | 100  | 010  | 110  |
| 111 | 000  | 000  | 000  | 000  | 000  | 000  | 000  | 000  |

max(G) := maximum number of fixed points in a BN on Gmin(G) := minimum number of fixed points in a BN on G



| x   | f(x) |
|-----|------|------|------|------|------|------|------|------|
| 000 | 111  | 111  | 111  | 111  | 111  | 111  | 111  | 111  |
| 001 | 001  | 101  | 011  | 111  | 001  | 101  | 011  | 111  |
| 010 | 010  | 110  | 010  | 110  | 011  | 111  | 011  | 111  |
| 011 | 000  | 000  | 010  | 010  | 001  | 001  | 011  | 011  |
| 100 | 100  | 100  | 110  | 110  | 101  | 101  | 111  | 111  |
| 101 | 000  | 100  | 000  | 100  | 001  | 101  | 001  | 101  |
| 110 | 000  | 100  | 010  | 110  | 000  | 100  | 010  | 110  |
| 111 | 000  | 000  | 000  | 000  | 000  | 000  | 000  | 000  |

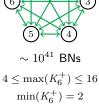


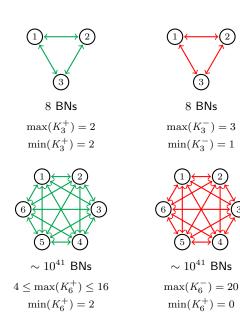




8 BNs

 $\max(K_3^-) = 3$  $\min(K_3^-) = 1$ 





15/56

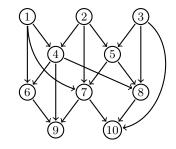
3

# Outline

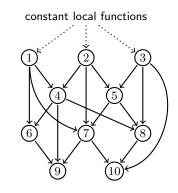
- 1. Absence of cycle
- 2. Positive and negative cycles
- 3. Absence of positive/negative cycle
- 4. Positive feedback bound
- 5. Positive and negative cliques
- 6. The monotone case
- 7. Conclusion

# Outline

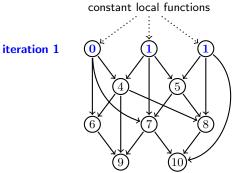
- 1. Absence of cycle
- 2. Positive and negative cycles
- 3. Absence of positive/negative cycle
- 4. Positive feedback bound
- 5. Positive and negative cliques
- 6. The monotone case
- 7. Conclusion



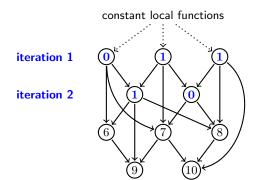
G

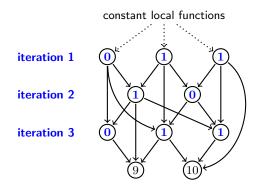


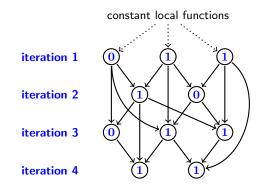


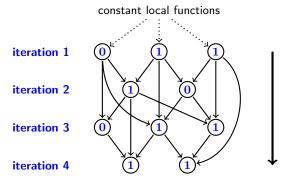




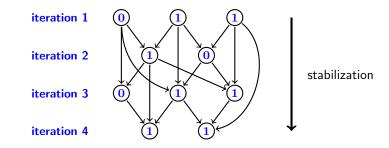








stabilization



**Theorem** [Robert, 1980] If G is acyclic then  $f^n$  is a constant function, thus  $\min(G) = \max(G) = 1.$ 

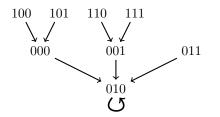
# Example 1

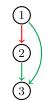
| ſ | $f_1(x)$ | = 0                |
|---|----------|--------------------|
| { | $f_2(x)$ | $=\overline{x_1}$  |
| l | $f_3(x)$ | $= x_1 \wedge x_2$ |

| x   | f(x) |
|-----|------|
| 000 | 010  |
| 001 | 010  |
| 010 | 010  |
| 011 | 010  |
| 100 | 000  |
| 101 | 000  |
| 110 | 001  |
| 111 | 001  |

Dynamic







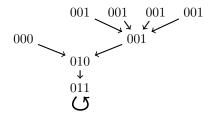
# Example 2

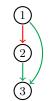
| $f_1(x)$ | = 0                                                   |
|----------|-------------------------------------------------------|
| $f_2(x)$ | $=\overline{x_1}$                                     |
| $f_3(x)$ | $= x_1 \vee x_2$                                      |
|          | $egin{array}{l} f_1(x) \ f_2(x) \ f_3(x) \end{array}$ |

| f(x) |
|------|
| 010  |
| 010  |
| 011  |
| 011  |
| 001  |
| 001  |
| 001  |
| 001  |
|      |









François Robert [1980]

no cycle  $\Rightarrow$  "simple" dynamic "complexe" dynamic  $\Rightarrow$  cycles

René Thomas [1981] : two type of cycles, positive and negative.

Adrien Richard

1. Positive cycle : even number of negative arcs



2. Negative cycle : even number of negative arcs



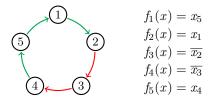
# Outline

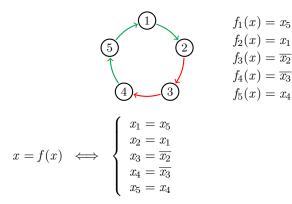
- 1. Absence of cycle
- 2. Positive and negative cycles
- 3. Absence of positive/negative cycle
- 4. Positive feedback bound
- 5. Positive and negative cliques
- 6. The monotone case
- 7. Conclusion

In a cycle, each vertex i has a unique in-neighbor j, and

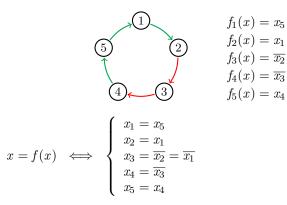
$$f_i(x) = \begin{cases} x_j & \text{if } j \to i \text{ is positive} \\ \overline{x_j} & \text{if } j \to i \text{ is negative} \end{cases}$$

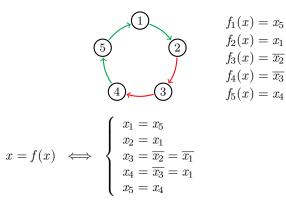
# Example



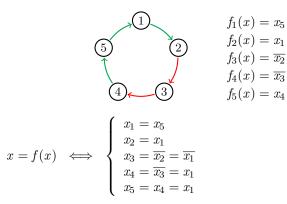


24/56





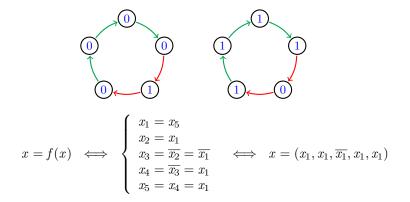
24/56



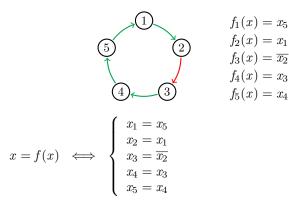
$$x = f(x) \iff \begin{cases} x_1 = x_5 \\ x_2 = x_1 \\ x_3 = \overline{x_2} = x_1 \\ x_3 = \overline{x_2} = \overline{x_1} \\ x_4 = \overline{x_3} = x_1 \\ x_5 = x_4 = x_1 \end{cases} \iff x = (x_1, x_1, \overline{x_1}, x_1, x_1)$$

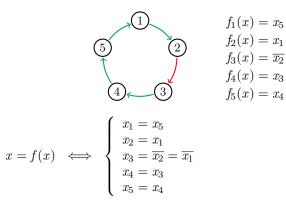
$$x = f(x) \iff \begin{cases} x_1 = x_5 \\ x_2 = x_1 \\ x_3 = \overline{x_2} = \overline{x_1} \\ x_4 = \overline{x_3} = x_1 \\ x_5 = x_4 = x_1 \end{cases} \iff x = (x_1, x_1, \overline{x_1}, x_1, x_1)$$

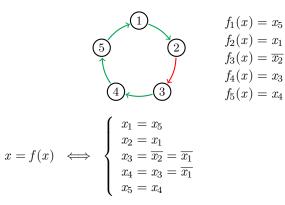
There are exactly two fixed points : 00100 and 11011.

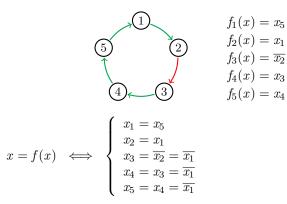


There are exactly two fixed points : 00100 and 11011.









$$x = f(x) \iff \begin{cases} x_1 = x_5 \\ x_2 = x_1 \\ x_3 = \overline{x_2} \\ x_2 = x_1 \\ x_3 = \overline{x_2} = \overline{x_1} \\ x_3 = \overline{x_2} = \overline{x_1} \\ x_5 = x_4 = \overline{x_1} \\ x_5 = x_4 = \overline{x_1} \end{cases} \Rightarrow \text{ contradiction}$$

## Fixed points for a negative cycle

$$x = f(x) \iff \begin{cases} x_1 = x_5 \\ x_2 = x_1 \\ x_3 = \overline{x_2} \\ x_4 = x_3 = \overline{x_1} \\ x_5 = x_4 = \overline{x_1} \\ x_5 = x_4 = \overline{x_1} \end{cases} \Rightarrow \text{ contradiction}$$

## There is no fixed point !

## Proposition

1. If G is a positive cycle,

$$\min(G) = \max(G) = 2.$$

1. If G is a negative cycle,

 $\min(G) = \max(G) = 0.$ 

# Outline

- 1. Absence of cycle
- 2. Positive and negative cycles
- 3. Absence of positive/negative cycle
- 4. Positive feedback bound
- 5. Positive and negative cliques
- 6. The monotone case
- 7. Conclusion

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .

# Corollary [Robert 1980]

If G is acyclic, then  $\min(G) = \max(G) = 1$ .

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .

Let G be a strongly connected interaction graph.

- 3. If G has only positive cycles, then  $\min(G) \ge 2$ .
- 4. If G has only negative cycles, then max(G) = 0.

## Corollary [Robert 1980]

If G is acyclic, then  $\min(G) = \max(G) = 1$ .

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .

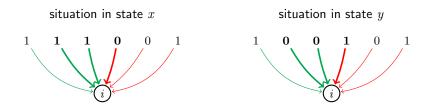
Let G be a strongly connected interaction graph.

- 3. If G has only positive cycles, then  $\min(G) \ge 2$ .
- 4. If G has only negative cycles, then max(G) = 0.

Corollary [Robert 1980]

If G is acyclic, then  $\min(G) = \max(G) = 1$ .

LOCAL LEMMA



## LOCAL LEMMA



**Question :** Can we compare  $f_i(x)$  et  $f_i(y)$ ?

Adrien Richard

## LOCAL LEMMA



**Question :** Can we compare  $f_i(x)$  et  $f_i(y)$ ?

**Réponse :** Yes ! We have  $f_i(x) \ge f_i(y)$ .

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

1. For all vertex *i* we set  $v_i := y_i - x_i$ .

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

- 1. For all vertex *i* we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

- 1. For all vertex i we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .

**Proof.** Suppose that  $x_i < y_i$ , that is,  $v_i = 1$ , the other case is similar.

$$\left.\begin{array}{l} x_j \ge y_j \text{ for all } j \to i \\ x_j \le y_j \text{ for all } \underline{j \to i} \end{array}\right\} \ \Rightarrow \ f_i(x) \ge f_i(y) \ \Rightarrow \ x_i \ge y_i \ \Rightarrow \ <>$$

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

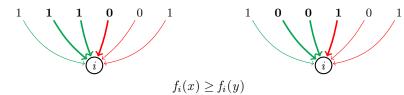
- 1. For all vertex i we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .

**Proof.** Suppose that  $x_i < y_i$ , that is,  $v_i = 1$ , the other case is similar.

$$\left.\begin{array}{l} x_j \ge y_j \text{ for all } j \to i \\ x_j \le y_j \text{ for all } j \to i \end{array}\right\} \ \Rightarrow \ f_i(x) \ge f_i(y) \ \Rightarrow \ x_i \ge y_i \ \Rightarrow \ <> \end{array}$$

situation in state x

situation in state y



**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

- 1. For all vertex i we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .

**Proof.** Suppose that  $x_i < y_i$ , that is,  $v_i = 1$ , the other case is similar.

$$\left.\begin{array}{l} x_j \ge y_j \text{ for all } j \to i \\ x_j \le y_j \text{ for all } j \to i \end{array}\right\} \ \Rightarrow \ f_i(x) \ge f_i(y) \ \Rightarrow \ x_i \ge y_i \ \Rightarrow \ <> \end{array}$$

Thus there is  $j \to i$  with  $x_j < y_j$  or  $j \to i$  with  $x_j > y_j$ .

30/56

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

- 1. For all vertex i we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .

**Proof.** Suppose that  $x_i < y_i$ , that is,  $v_i = 1$ , the other case is similar.

$$\left. \begin{array}{l} x_j \ge y_j \text{ for all } j \to i \\ x_j \le y_j \text{ for all } \underbrace{j \to i}_{j \to i} \end{array} \right\} \ \Rightarrow \ f_i(x) \ge f_i(y) \ \Rightarrow \ x_i \ge y_i \ \Rightarrow \ <> \end{array}$$

Thus there is  $j \to i$  with  $x_j < y_j$  or  $j \to i$  with  $x_j > y_j$ . Thus there is  $j \to i$  with  $v_j = 1$  or  $j \to i$  with  $v_j = -1$ .

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

- 1. For all vertex i we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .

**Proof.** Suppose that  $x_i < y_i$ , that is,  $v_i = 1$ , the other case is similar.

$$\left. \begin{array}{l} x_j \ge y_j \text{ for all } j \to i \\ x_j \le y_j \text{ for all } j \to i \end{array} \right\} \ \Rightarrow \ f_i(x) \ge f_i(y) \ \Rightarrow \ x_i \ge y_i \ \Rightarrow \ <> \end{array}$$

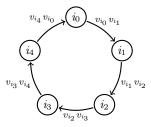
Thus there is  $j \to i$  with  $x_j < y_j$  or  $j \to i$  with  $x_j > y_j$ . Thus there is  $j \to i$  with  $v_j = 1$  or  $j \to i$  with  $v_j = -1$ . Thus there is  $j \to i$  with sign  $v_j v_i$ .

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

- 1. For all vertex *i* we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .

**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

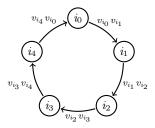
- 1. For all vertex i we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .
- 3. There is a cycle  $i_0 i_1 i_2 \dots i_\ell i_0$  where the sign of  $i_k \to i_{k+1}$  is  $v_{i_k} v_{i_{k+1}}$ .



**Proof**. Let f be a BN on G and let x and y be distinct fixed points of f.

- 1. For all vertex i we set  $v_i := y_i x_i$ .
- 2. If  $v_i \neq 0$  then *i* has an in-coming arc  $j \rightarrow i$  with sign  $v_j v_i$ .

3. There is a cycle  $i_0 i_1 i_2 \dots i_\ell i_0$  where the sign of  $i_k \to i_{k+1}$  is  $v_{i_k} v_{i_{k+1}}$ .



4. The sign s of this cycle is  $s = (v_0v_1) \cdot (v_1v_2) \cdot (v_2v_3) \cdot \ldots (v_\ell v_0) = 1$ .

30/56

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .

Let G be a strongly connected interaction graph.

- 3. If G has only positive cycles, then  $\min(G) \ge 2$ .
- 4. If G has only negative cycles, then max(G) = 0.

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .

Let G be a strongly connected interaction graph.

- 3. If G has only positive cycles, then  $\min(G) \ge 2$ .
- 4. If G has only negative cycles, then max(G) = 0.

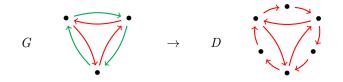
For all 
$$x, y \in \{0, 1\}^n$$
, we set  $\Delta(x, y) := \{i \in [n] : x_i \neq y_i\}$ .

**Positive cycle lemma.** If x and y are distinct fixed points of f, then

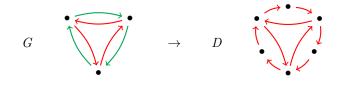
 $G[\Delta(x, y)]$  has a positive cycle.

 $\hookrightarrow$  Reduction to the strongly connected case

 $\hookrightarrow$  Reduction to the strongly connected case



 $\hookrightarrow$  Reduction to the strongly connected case

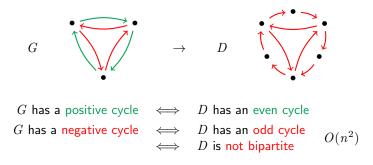


G has a positive cycle G has a negative cycle  $\iff D$  has an odd cycle

 $\iff$  D has an even cycle  $\iff D$  is not bipartite

32/56

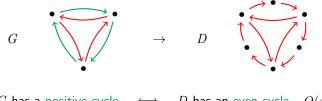
 $\hookrightarrow$  Reduction to the strongly connected case



We can decide in  $O(n^2)$  if D is bipartite :

- 1. We take a spanning tree  $T \subseteq D$ , and a proper 2-coloring c of T.
- 2. *D* is bipartite  $\iff c$  is a proper coloring of *D*.

 $\hookrightarrow$  Reduction to the strongly connected case



 $\begin{array}{rcl} G \text{ has a positive cycle} & \Longleftrightarrow & D \text{ has an even cycle} & O(n^d) \\ G \text{ has a negative cycle} & \Longleftrightarrow & D \text{ has an odd cycle} \\ & \Leftrightarrow & D \text{ is not bipartite} & O(n^2) \end{array}$ 

# **Theorem** [Robertson-Seymour-Thomas, 1999; McCuaig 2004] We can decide in polynomial time if D has an even cycle.

# Outline

- 1. Absence of cycle
- 2. Positive and negative cycles
- 3. Absence of positive/negative cycle

# 4. Positive feedback bound

- 5. Positive and negative cliques
- 6. The monotone case

# 7. Conclusion

#### We have seen that

 $G \text{ acyclic } \Rightarrow G \text{ without positive cycle } \Rightarrow \max(G) \leq 1$ 

## Do we have something of the form

G is not so far from being acyclic  $\Rightarrow \max(G)$  is not too large?

#### We have seen that

 $G \text{ acyclic } \Rightarrow G \text{ without positive cycle } \Rightarrow \max(G) \leq 1$ 

### Do we have something of the form

G is not so far from being acyclic  $\Rightarrow \max(G)$  is not too large?

#### How define a distance to acyclicity?

#### We have seen that

G acyclic  $\Rightarrow$  G without positive cycle  $\Rightarrow$  max $(G) \leq 1$ 

### Do we have something of the form

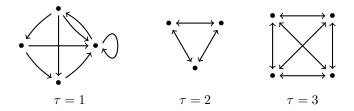
G is not so far from being acyclic  $\Rightarrow \max(G)$  is not too large?

#### How define a distance to acyclicity?

- $\hookrightarrow$  number of cycles ?
- $\hookrightarrow$  min bn of vertices to delete to make the graph acyclic?

- := min size of a set of vertices intersecting every cycle
- := minimum size of a Feedback Vertex Set (FVS)

- := min size of a set of vertices intersecting every cycle
- := minimum size of a Feedback Vertex Set (FVS)



:= min size of a set of vertices intersecting every cycle

:= minimum size of a Feedback Vertex Set (FVS)

### $au_p(G) :=$ positive transversal number

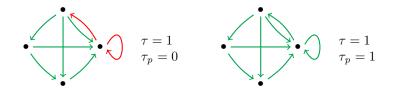
:= min size of a set of vertices intersecting every **positive cycle** 

:= min size of a set of vertices intersecting every cycle

:= minimum size of a Feedback Vertex Set (FVS)

#### $au_p(G) :=$ positive transversal number

:= min size of a set of vertices intersecting every **positive cycle** 



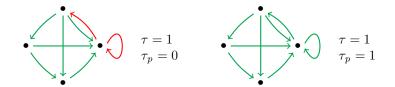
#### au(G) := transversal number

:= min size of a set of vertices intersecting every cycle

:= minimum size of a Feedback Vertex Set (FVS)

#### $au_p(G) :=$ positive transversal number

:= min size of a set of vertices intersecting every **positive cycle** 



**Remark 1**  $au_p \leq au$  (equality when all arcs are positive)

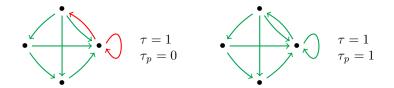
## au(G) := transversal number

:= min size of a set of vertices intersecting every cycle

:= minimum size of a Feedback Vertex Set (FVS)

#### $au_p(G) :=$ positive transversal number

:= min size of a set of vertices intersecting every **positive cycle** 



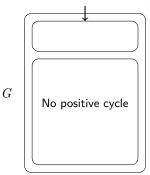
**Remark 1**  $\tau_p \le \tau$  (equality when all arcs are positive) **Remark 2**  $\tau$  and  $\tau_p$  are invariant by subdivisions of arcs

 $\max(G) \le 2^{\tau_p} \le 2^{\tau}$ 

Adrien Richard

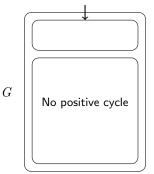
$$\max(G) \le 2^{\tau_p} \le 2^{\tau}$$

Positive FVS S of size  $\tau_p$ 



$$\max(G) \le 2^{\tau_p} \le 2^{\tau}$$

Positive FVS S of size  $\tau_p$ 



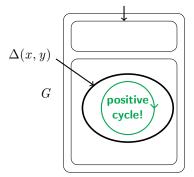
Let f be a RB on G.

Let A be the set of fixed points.

Let x and y be distinct fixed points.

$$\max(G) \le 2^{\tau_p} \le 2^{\tau}$$

Positive FVS S of size  $\tau_p$ 



Let f be a RB on G.

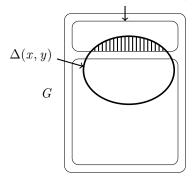
Let A be the set of fixed points.

Let x and y be distinct fixed points.

-  $G[\Delta(x,y)]$  has a positive cycle

$$\max(G) \le 2^{\tau_p} \le 2^{\tau}$$

Positive FVS S of size  $\tau_p$ 



Let f be a RB on G.

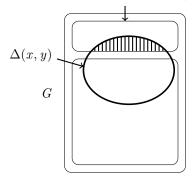
Let A be the set of fixed points.

Let x and y be distinct fixed points.

- $G[\Delta(x,y)]$  has a positive cycle
- $\Delta(x, y)$  intersects S, ie  $x_S \neq y_S$

$$\max(G) \le 2^{\tau_p} \le 2^{\tau}$$

Positive FVS S of size  $\tau_p$ 



Let f be a RB on G.

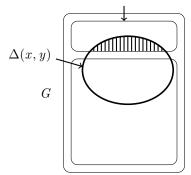
Let A be the set of fixed points.

Let x and y be distinct fixed points.

- $G[\Delta(x,y)]$  has a positive cycle
- $\Delta(x,y)$  intersects S, ie  $x_S \neq y_S$
- $x \mapsto x_S$  is an injection from A to  $\{0,1\}^S$

$$\max(G) \le 2^{\tau_p} \le 2^{\tau}$$

Positive FVS S of size  $\tau_p$ 



Let f be a RB on G. Let A be the set of fixed points. Let x and y be distinct fixed points.

- $G[\Delta(x,y)]$  has a positive cycle
- $\Delta(x, y)$  intersects S, ie  $x_S \neq y_S$
- $x \mapsto x_S$  is an injection from A to  $\{0,1\}^S$

Thus  $|A| \le |\{0,1\}^S| = 2^{\tau_p}$ 

 $\max(G) \le 2^{\tau_p} \le 2^{\tau}$ 

**Remark** G has no positive cycle  $\Rightarrow \tau_p = 0 \Rightarrow \max(G) \le 1$ 

 $\max(G) \le 2^{\tau_p} \le 2^{\tau}$ 

**Remark** G has no positive cycle  $\Rightarrow \tau_p = 0 \Rightarrow \max(G) \le 1$ 

# This is the only upper bound on max(G) that only depend on the cycle structure

No lower bound on max(G) !

#### Theorem [Aracena, 2008]

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .
- 3. More generally,  $\max(G) \leq 2^{\tau_p}$ .

Let G be a strongly connected interaction graph.

- 4. If G has only positive cycles, then  $\min(G) \ge 2$ .
- 5. If G has only negative cycles, then max(G) = 0.

#### Theorem [Aracena, 2008]

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .
- 3. More generally,  $\max(G) \leq 2^{\tau_p}$ .

Let G be a strongly connected interaction graph.

- 4. If G has only positive cycles, then  $\min(G) \ge 2$ .
- 5. If G has only negative cycles, then max(G) = 0.

## Remarks

- No general lower bound on  $\max(G)$ .
- Few results on  $\min(G)$ .

#### Theorem [Aracena, 2008]

Let G be an interaction graph.

- 1. If G has only positive cycles, then  $\min(G) \ge 1$ .
- 2. If G has only negative cycles, then  $\max(G) \leq 1$ .
- 3. More generally,  $\max(G) \leq 2^{\tau_p}$ .

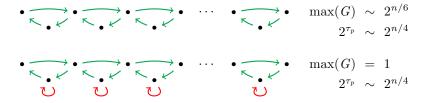
Let G be a strongly connected interaction graph.

- 4. If G has only positive cycles, then  $\min(G) \ge 2$ .
- 5. If G has only negative cycles, then max(G) = 0.

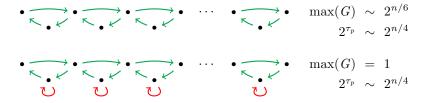
## Theorem [Bridoux-Durbec-Perrot-R., 2019]

- 1. It is polynomial to decide if  $max(G) \ge 1$ .
- 2. It is **NP-complete** to decide if  $max(G) \ge 2$ .
- 3. It is **NEXPTIME-complete** to decide if min(G) = 0.

The bound  $2^{\tau_p}$  is very perfectible



The bound  $2^{\tau_p}$  is very perfectible



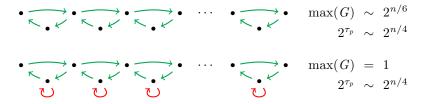
How introduce **negative cycles** in the bound?

 $\hookrightarrow$  Difficult problem : positive cycles are sometime favorable

... and sometime unfavorable to the presence of many fixed points.

38/56

The bound  $2^{\tau_p}$  is very perfectible



How introduce **negative cycles** in the bound?

→ Difficult problem : positive cycles are sometime favorable
 ... and sometime unfavorable to the presence of many fixed points.

$$(1) \longleftrightarrow (2) \\ (3) \qquad \max(K_3^+) = 2 \qquad (1) \longleftrightarrow (2) \\ (3) \qquad \max(K_3^-) = 3$$

#### Two approaches :

- 1. Fixe the graph and make variations on signs  $\rightarrow$  clique  $K_n$ .
- 2. Fixe the signs and make variations of the graphs  $\rightarrow$  all arcs positive.

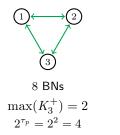
# Outline

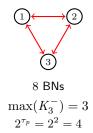
- 1. Absence of cycle
- 2. Positive and negative cycles
- 3. Absence of positive/negative cycle
- 4. Positive feedback bound

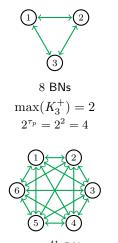
## 5. Positive and negative cliques

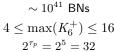
- 6. The monotone case
- 7. Conclusion

40/56







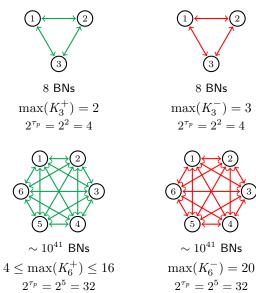


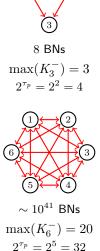
3

8 BNs

 $\max(K_3^-) = 3$ 

 $2^{\tau_p} = 2^2 = 4$ 





1. The **Hamming distance** between two states  $x, y \in \{0, 1\}^n$  is

$$d_H(x, y) := \#\Delta(x, y) := \#\{i \in [n] : x_i \neq y_i\}.$$

1. The **Hamming distance** between two states  $x, y \in \{0, 1\}^n$  is

$$d_H(x,y) := \#\Delta(x,y) := \#\{i \in [n] : x_i \neq y_i\}.$$

## Example

$$x = 00110011$$
  
 $y = 11110000$   $d_H(x, y) = 4.$ 

1. The **Hamming distance** between two states  $x, y \in \{0, 1\}^n$  is

$$d_H(x,y) := \#\Delta(x,y) := \#\{i \in [n] : x_i \neq y_i\}.$$

2. We define the **partial order**  $\leq$  on  $\{0,1\}^n$  by :

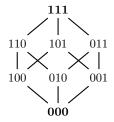
$$x \leq y \iff x_i \leq y_i \ \forall i \in [n].$$

1. The Hamming distance between two states  $x, y \in \{0, 1\}^n$  is

$$d_H(x,y) := \#\Delta(x,y) := \#\{i \in [n] : x_i \neq y_i\}.$$

2. We define the **partial order**  $\leq$  on  $\{0,1\}^n$  by :

$$x \leq y \iff x_i \leq y_i \ \forall i \in [n].$$



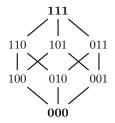
1. The **Hamming distance** between two states  $x, y \in \{0, 1\}^n$  is

$$d_H(x,y) := \#\Delta(x,y) := \#\{i \in [n] : x_i \neq y_i\}.$$

2. We define the **partial order**  $\leq$  on  $\{0,1\}^n$  by :

$$x \leq y \iff x_i \leq y_i \ \forall i \in [n].$$

3. A chain is a set of pairwise comparable states.



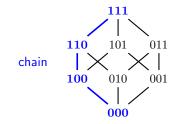
1. The Hamming distance between two states  $x, y \in \{0, 1\}^n$  is

$$d_H(x,y) := \#\Delta(x,y) := \#\{i \in [n] : x_i \neq y_i\}.$$

2. We define the **partial order**  $\leq$  on  $\{0,1\}^n$  by :

$$x \leq y \iff x_i \leq y_i \ \forall i \in [n].$$

3. A chain is a set of pairwise comparable states.



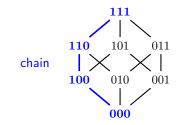
1. The **Hamming distance** between two states  $x, y \in \{0, 1\}^n$  is

$$d_H(x,y) := \#\Delta(x,y) := \#\{i \in [n] : x_i \neq y_i\}.$$

2. We define the **partial order**  $\leq$  on  $\{0,1\}^n$  by :

$$x \le y \iff x_i \le y_i \ \forall i \in [n].$$

- 3. A chain is a set of pairwise comparable states.
- 4. An antichain is a set of pairwise incomparable states.



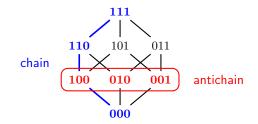
1. The **Hamming distance** between two states  $x, y \in \{0, 1\}^n$  is

$$d_H(x,y) := \#\Delta(x,y) := \#\{i \in [n] : x_i \neq y_i\}.$$

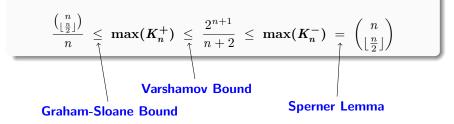
2. We define the **partial order**  $\leq$  on  $\{0,1\}^n$  by :

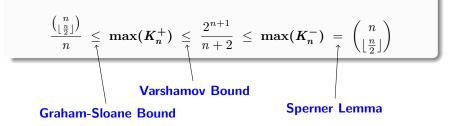
$$x \leq y \iff x_i \leq y_i \ \forall i \in [n].$$

- 3. A chain is a set of pairwise comparable states.
- 4. An antichain is a set of pairwise incomparable states.



$$\frac{\binom{n}{\lfloor \frac{n}{2} \rfloor}}{n} \leq \max(K_n^+) \leq \frac{2^{n+1}}{n+2} \leq \max(K_n^-) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$





**Remark** : In both cases, the positive feedback bound is  $2^{n-1}$ , while

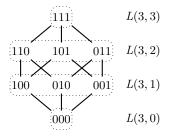
$$\binom{n}{\lfloor \frac{n}{2} \rfloor} = O(2^{n - \log n}) = o(2^{n-1})$$

Adrien Richard

$$\frac{\binom{n}{\lfloor \frac{n}{2} \rfloor}}{n} \leq \max(\mathbf{K}_n^+) \leq \frac{2^{n+1}}{n+2} \leq \max(\mathbf{K}_n^-) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

#### Lower bound for the positive clique

Let L(n,k) the set of  $x \in \{0,1\}^n$  with exactly k ones;  $|L(n,k)| = {n \choose k}$ .



$$\frac{\binom{n}{\lfloor \frac{n}{2} \rfloor}}{n} \leq \max(K_n^+) \leq \frac{2^{n+1}}{n+2} \leq \max(K_n^-) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

#### Lower bound for the positive clique

Let L(n,k) the set of  $x \in \{0,1\}^n$  with exactly k ones;  $|L(n,k)| = \binom{n}{k}$ . Let  $A \subseteq L(n,k)$  with  $d_H(x,y) \ge 4$  for all distinct  $x, y \in A$ .

$$rac{\left(rac{n}{\lfloorrac{n}{2}
ight)}
ight)}{n}~\leq~ \max(K_n^+)~\leq~ rac{2^{n+1}}{n+2}~\leq~ \max(K_n^-)~=~ inom{n}{\lfloorrac{n}{2}
ight
ceil}$$

#### Lower bound for the positive clique

Let L(n,k) the set of  $x \in \{0,1\}^n$  with exactly k ones;  $|L(n,k)| = {n \choose k}$ . Let  $A \subseteq L(n,k)$  with  $d_H(x,y) \ge 4$  for all distinct  $x, y \in A$ .

 $\hookrightarrow$  There is a BN on  $K_n^+$  that fixes A; thus  $\max(K_n^+) \ge |A|$ .

$$rac{\left(rac{n}{\lfloorrac{n}{2}
ight)}
ight)}{n}~\leq~\max(\pmb{K_n^+})~\leq~rac{2^{n+1}}{n+2}~\leq~\max(\pmb{K_n^-})~=~inom{n}{\lfloorrac{n}{2}
ight
ceil}$$

#### Lower bound for the positive clique

Let L(n,k) the set of  $x \in \{0,1\}^n$  with exactly k ones;  $|L(n,k)| = \binom{n}{k}$ . Let  $A \subseteq L(n,k)$  with  $d_H(x,y) \ge 4$  for all distinct  $x, y \in A$ .

 $\hookrightarrow$  There is a BN on  $K_n^+$  that fixes A; thus  $\max(K_n^+) \ge |A|$ .

#### Graham-Sloane Bound [1980]

It exists  $A \subseteq L(n,k)$  with  $d_H(x,y) \ge 4$  for all distinct  $x, y \in A$  such that

$$|A| \ge \frac{\binom{n}{k}}{n}$$

$$rac{\left(rac{n}{\lfloorrac{n}{2}
ight)}
ight)}{n}~\leq~ \max(K_n^+)~\leq~ rac{2^{n+1}}{n+2}~\leq~ \max(K_n^-)~=~ inom{n}{\lfloorrac{n}{2}
floor}$$

### Upper bound for the positive clique

Let f be a BN on  $K_n^+$ . If x and y are distinct fixed points of f, then

$$d_{\max}(x, y) := \max(|\{i : x_i < y_i\}|, |\{i : x_i > y_i\}|) \ge 2.$$

$$rac{\left(rac{n}{\lfloorrac{n}{2}
ight)}
ight)}{n}~\leq~\max(K_n^+)~\leq~rac{2^{n+1}}{n+2}~\leq~\max(K_n^-)~=~inom{n}{\lfloorrac{n}{2}
ight
ceil}$$

### Upper bound for the positive clique

Let f be a BN on  $K_n^+$ . If x and y are distinct fixed points of f, then

$$d_{\max}(x, y) := \max(|\{i : x_i < y_i\}|, |\{i : x_i > y_i\}|) \ge 2.$$

#### Varshamov Bound [1965]

If  $A \subseteq \{0,1\}^n$  and  $d_{\max}(x,y) \ge 2$  for all distinct  $x, y \in A$  distincts, then

$$A| \le \frac{2^{n+1}}{n+2}.$$

$$\frac{\binom{n}{\lfloor \frac{n}{2} \rfloor}}{n} \leq \max(K_n^+) \leq \frac{2^{n+1}}{n+2} \leq \max(K_n^-) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

#### Equality for the negative clique

Let f be a BN on  $K_n^-$ , we have  $x \le y \Rightarrow f(x) \ge f(y)$ .

Thus if x and y are fixed points, we have  $x \leq y \Rightarrow f(x) \geq f(y) \Rightarrow x \geq y$ .

Fixed points are pairwise incomparable : they form an antichain.

$$rac{\left(rac{n}{\lfloorrac{n}{2}
ight)}
ight)}{n}~\leq~ \max(K_n^+)~\leq~ rac{2^{n+1}}{n+2}~\leq~ \max(K_n^-)~=~ inom{n}{\lfloorrac{n}{2}
ight
ceil}$$

#### Equality for the negative clique

Let f be a BN on  $K_n^-$ , we have  $x \le y \Rightarrow f(x) \ge f(y)$ .

Thus if x and y are fixed points, we have  $x \leq y \Rightarrow f(x) \geq f(y) \Rightarrow x \geq y$ .

Fixed points are pairwise incomparable : they form an antichain.

#### Sperner Lemma [1928]

The maximum size of an antichain of  $\{0,1\}^n$  is  $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ .

$$rac{\left(rac{n}{\lfloorrac{n}{2}
ight)}
ight)}{n}~\leq~\max(m{K}^+_n)~\leq~rac{2^{n+1}}{n+2}~\leq~\max(m{K}^-_n)~=~inom{n}{\lfloorrac{n}{2}
ight)}$$

#### Equality for the negative clique

Let f be a BN on  $K_n^-$ , we have  $x \le y \Rightarrow f(x) \ge f(y)$ .

Thus if x and y are fixed points, we have  $x \leq y \Rightarrow f(x) \geq f(y) \Rightarrow x \geq y$ .

Fixed points are pairwise incomparable : they form an antichain.

#### Sperner Lemma [1928]

The maximum size of an antichain of  $\{0,1\}^n$  is  $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ .

Thus  $\max(K_n^-) \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$ ; the bound is reached by the "minority" network.

$$rac{\left(rac{n}{\lfloorrac{n}{2}
ight)}
ight)}{n}~\leq~\max(m{K}^+_n)~\leq~rac{2^{n+1}}{n+2}~\leq~\max(m{K}^-_n)~=~inom{n}{\lfloorrac{n}{2}
ight)}$$

#### Equality for the negative clique

Let f be a BN on  $K_n^-$ , we have  $x \le y \Rightarrow f(x) \ge f(y)$ .

Thus if x and y are fixed points, we have  $x \leq y \Rightarrow f(x) \geq f(y) \Rightarrow x \geq y$ .

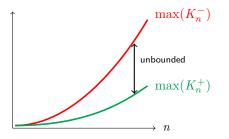
Fixed points are pairwise incomparable : they form an antichain.

#### Sperner Lemma [1928]

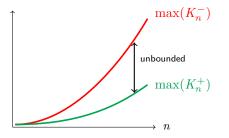
The maximum size of an antichain of  $\{0,1\}^n$  is  $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ .

Thus  $\max(K_n^-) \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}$ ; the bound is reached by the "minority" network.

$$rac{\left(rac{n}{\lfloorrac{n}{2}
ight)}
ight)}{n}~\leq~ \max(K_n^+)~\leq~ rac{2^{n+1}}{n+2}~\leq~ \max(K_n^-)~=~ inom{n}{\lfloorrac{n}{2}
floor}$$



$$\frac{\binom{n}{\lfloor \frac{n}{2} \rfloor}}{n} \leq \max(K_n^+) \leq \frac{2^{n+1}}{n+2} \leq \max(K_n^-) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$



**Corollary.** For all fixed k and sufficiently large n,

 $\max(K_n^-) > \max(K_{n+k}^+).$ 

$$\frac{\binom{n}{\lfloor \frac{n}{2} \rfloor}}{n} \leq \max(K_n^+) \leq \frac{2^{n+1}}{n+2} \leq \max(K_n^-) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

### Conjecture

If  $K_n^{\sigma}$  is a signed clique with n vertices,

 $\max(K_n^\sigma) \leq \max(K_n^-)$ 

#### Two approaches :

- 1. Fixe the graph and make variations on signs  $\rightarrow$  clique  $K_n$ .
- 2. Fixe the signs and make variations of the graphs  $\rightarrow$  all arcs positive.

# Outline

- 1. Absence of cycle
- 2. Positive and negative cycles
- 3. Absence of positive/negative cycle
- 4. Positive feedback bound
- 5. Positive and negative cliques
- 6. The monotone case
- 7. Conclusion

1. What happens when there are only  $\ensuremath{\textbf{positive cycles}}$  ?

 $\hookrightarrow$  In that case,  $2^{\tau_p}=2^{\tau}$ 

- 1. What happens when there are only **positive cycles**?  $\hookrightarrow$  In that case,  $2^{\tau_p} = 2^{\tau}$
- 2. What happens when there are only positive arcs?

1. What happens when there are only **positive cycles**?

 $\hookrightarrow$  In that case,  $2^{\tau_p}=2^{\tau}$ 

2. What happens when there are only positive arcs?

# Proposition

1. Suppose that G is strongly connected and has only positive cycles. Let  $G^+$  be obtained from G by making positive every arc. Then

 $\max(G) = \max(G^+).$ 

2. Furthermore, every BN f on  $G^+$  is monotone, that is,

 $\forall x, y \in \{0, 1\}^n \qquad x \le y \ \Rightarrow \ f(x) \le f(y).$ 

If f is monotone then Fix(f) is a non-empty lattice. In particular, f has a unique minimal fixed point and a unique maximal fixed point (wrt  $\leq$ ).

If f is monotone then Fix(f) is a non-empty lattice. In particular, f has a unique minimal fixed point and a unique maximal fixed point (wrt  $\leq$ ).

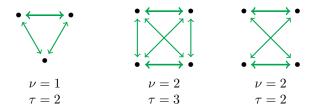
# u(G) := "packing number"

:= maximum size of a set of pairwise vertex-disjoint cycles

If f is monotone then Fix(f) is a non-empty lattice. In particular, f has a unique minimal fixed point and a unique maximal fixed point (wrt  $\leq$ ).

### $\nu(G) :=$ "packing number"

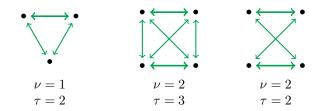
:= maximum size of a set of pairwise vertex-disjoint cycles



If f is monotone then Fix(f) is a non-empty lattice. In particular, f has a unique minimal fixed point and a unique maximal fixed point (wrt  $\leq$ ).

### $\nu(G) :=$ "packing number"

:= maximum size of a set of pairwise vertex-disjoint cycles



### **Remark** $\nu \leq \tau$

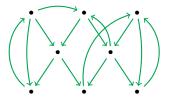
If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

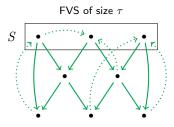
### Proof of the isomorphism



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

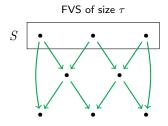
### Proof of the isomorphism



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

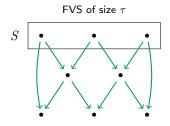
### Proof of the isomorphism



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of the isomorphism**  $\forall x, y \in Fix(f)$   $x_S \leq y_S \iff x \leq y$ 

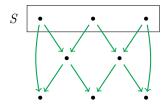


If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of the isomorphism**  $\forall x, y \in Fix(f)$   $x_S \leq y_S \iff x \leq y$ 

$$Fix(f) \cong L := \{x_S : x \in Fix(f)\}$$
  $(L \subseteq \{0, 1\}^S)$ 

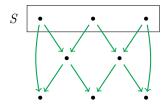


If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of the isomorphism**  $\forall x, y \in \mathsf{Fix}(f) \quad x_S \leq y_S \implies x \leq y$ 

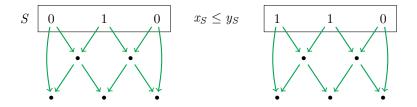
$$Fix(f) \cong L := \{x_S : x \in Fix(f)\}$$
  $(L \subseteq \{0, 1\}^S)$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

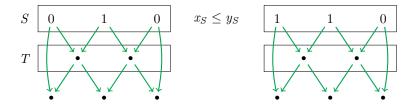
**Proof of the isomorphism**  $\forall x, y \in Fix(f)$   $x_S \leq y_S \implies x \leq y$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

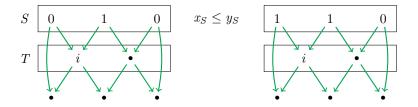
**Proof of the isomorphism**  $\forall x, y \in \mathsf{Fix}(f) \quad x_S \leq y_S \implies x \leq y$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

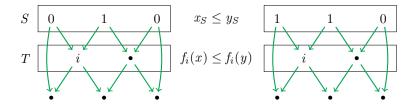
**Proof of the isomorphism**  $\forall x, y \in Fix(f)$   $x_S \leq y_S \implies x \leq y$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

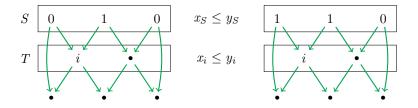
**Proof of the isomorphism**  $\forall x, y \in Fix(f)$   $x_S \leq y_S \implies x \leq y$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

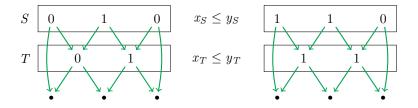
**Proof of the isomorphism**  $\forall x, y \in Fix(f)$   $x_S \leq y_S \implies x \leq y$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

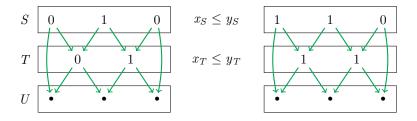
**Proof of the isomorphism**  $\forall x, y \in \mathsf{Fix}(f) \quad x_S \leq y_S \implies x \leq y$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

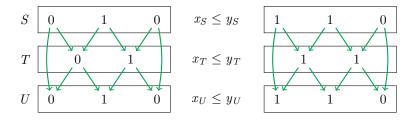
**Proof of the isomorphism**  $\forall x, y \in \mathsf{Fix}(f) \quad x_S \leq y_S \implies x \leq y$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of the isomorphism**  $\forall x, y \in \mathsf{Fix}(f) \quad x_S \leq y_S \implies x \leq y$ 



If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of 2** If Fix(f) has a chain of k + 1 fixed points then  $\nu \ge k$ .

If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of 2** If Fix(f) has a chain of k + 1 fixed points then  $\nu \ge k$ .

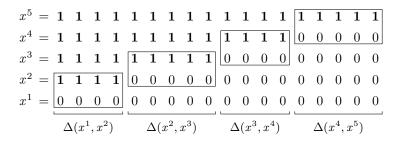
| $x^5 = 1$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|-----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $x^4 = 1$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| $x^3 = 1$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $x^2 = 1$ | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $x^1 = 0$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

### Theorem [Aracena-Salinas-R, 2017]

If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of 2** If Fix(f) has a chain of k + 1 fixed points then  $\nu \ge k$ .



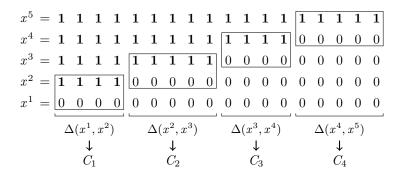
51/56

### Theorem [Aracena-Salinas-R, 2017]

If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of 2** If Fix(f) has a chain of k + 1 fixed points then  $\nu \ge k$ .



### Theorem [Aracena-Salinas-R, 2017]

If f is monotone, Fix(f) is isomorphic to a subset  $L \subseteq \{0,1\}^{\tau}$  such that

- 1. L is a non-empty lattice
- 2. L has no chain of size  $\nu + 2$

**Proof of 2** If Fix(f) has a chain of k + 1 fixed points then  $\nu \ge k$ .

Thus Fix(f) has no chain of size  $\nu + 2$ , and L also.

## If $A \subseteq \{0,1\}^n$ has no chain of size $\ell + 1$ then

 $|A| \leq \text{sum of the } \ell \text{ largest binomial coefficient } \binom{n}{k}$ 

If  $A \subseteq \{0,1\}^n$  has no chain of size  $\ell + 1$  then

 $|A| \leq \text{sum of the } \ell \text{ largest binomial coefficient } \binom{n}{k}$ 

Remark The case  $\ell = 1$  is Sperner Lemma on antichains

If  $A \subseteq \{0,1\}^n$  has no chain of size  $\ell + 1$  then

 $|A| \leq \text{sum of the } \ell \text{ largest binomial coefficient } \binom{n}{k}$ 

**Corollary** If f is monotone then

 $|\mathsf{Fix}(f)| - 2 \leq \mathsf{sum} \mathsf{ of the } \nu - 1 \mathsf{ largest binomial coefficients } {\tau \choose k}$ 

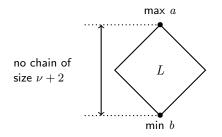
If  $A \subseteq \{0,1\}^n$  has no chain of size  $\ell + 1$  then

 $|A| \leq sum \text{ of the } \ell \text{ largest binomial coefficient } {n \choose k}$ 

**Corollary** If *f* is monotone then

 $|\mathsf{Fix}(f)| - 2 \leq sum \text{ of the } \nu - 1 \text{ largest binomial coefficients } {\tau \choose k}$ 

**Proof** Let  $L \subseteq \{0,1\}^{\tau}$  a non-empty lattice isomorphic to Fix(f)



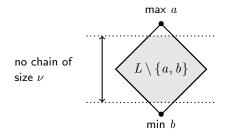
If  $A \subseteq \{0,1\}^n$  has no chain of size  $\ell + 1$  then

 $|A| \leq sum \text{ of the } \ell \text{ largest binomial coefficient } {n \choose k}$ 

**Corollary** If *f* is monotone then

 $|\mathsf{Fix}(f)| - 2 \leq sum \text{ of the } \nu - 1 \text{ largest binomial coefficients } {\tau \choose k}$ 

**Proof** Let  $L \subseteq \{0,1\}^{\tau}$  a non-empty lattice isomorphic to Fix(f)



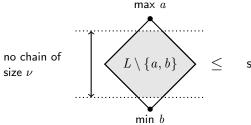
If  $A \subseteq \{0,1\}^n$  has no chain of size  $\ell + 1$  then

 $|A| \leq sum \text{ of the } \ell \text{ largest binomial coefficient } {n \choose k}$ 

**Corollary** If *f* is monotone then

 $|\mathsf{Fix}(f)| - 2 \leq \mathsf{sum} \mathsf{ of the } \nu - 1 \mathsf{ largest binomial coefficients } {\tau \choose k}$ 

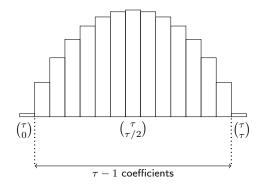
**Proof** Let  $L \subseteq \{0,1\}^{\tau}$  a non-empty lattice isomorphic to Fix(f)



 $\leq$  sum of the  $\nu - 1$  largest  $\begin{pmatrix} \tau \\ k \end{pmatrix}$ 

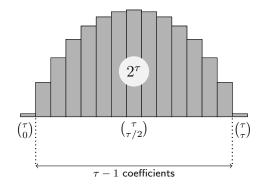
## **Corollary** $\max(G^+) \leq \text{sum of the } \nu - 1 \text{ largest } \binom{\tau}{k} + 2$

## **Corollary** $\max(G^+) \leq \text{sum of the } \nu - 1 \text{ largest } {\tau \choose k} + 2$

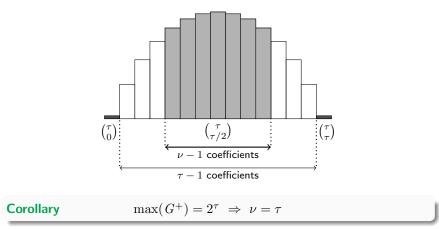


53/56

## **Corollary** $\max(G^+) \leq \text{sum of the } \nu - 1 \text{ largest } {\tau \choose k} + 2$



**Corollary**  $\max(G^+) \leq \text{sum of the } \nu - 1 \text{ largest } {\tau \choose k} + 2$ 



The bound is interesting when  $\nu$  is small compared with  $\tau$ 

The largest gap we known is  $\nu \log \nu \leq 30\tau$  [Alon-Seymour 93]

**Theorem** [Reed-Robertson-Seymour-Thomas, 1995] It exists  $h : \mathbb{N} \to \mathbb{N}$  such that, for every digraph G,

 $\tau \le h(\nu)$ 

The bound given on  $h(\nu)$  is huge (iterated use of Ramsey theorem)

**Theorem** [Reed-Robertson-Seymour-Thomas, 1995] It exists  $h : \mathbb{N} \to \mathbb{N}$  such that, for every digraph G,

 $\tau \le h(\nu)$ 

The bound given on  $h(\nu)$  is huge (iterated use of Ramsey theorem)

**Corollary**  $\max(G) \le 2^{\tau_p} \le 2^{\tau} \le 2^{h(\nu)}$ 

**Theorem** [Reed-Robertson-Seymour-Thomas, 1995] It exists  $h : \mathbb{N} \to \mathbb{N}$  such that, for every digraph G,

 $\tau \le h(\nu)$ 

The bound given on  $h(\nu)$  is huge (iterated use of Ramsey theorem)

**Corollary**  $\max(G) \le 2^{\tau_p} \le 2^{\tau} \le 2^{h(\nu)}$ 

Conjecture

 $\max(G) \le 2^{O(\nu \log \nu)}$ 

# Outline

- 1. Absence of cycle
- 2. Positive and negative cycles
- 3. Absence of positive/negative cycle
- 4. Positive feedback bound
- 5. Positive and negative cliques
- 6. The monotone case

## 7. Conclusion

1. BNs are classical models for complexe systems : easy to define, but hard to predict.

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).

### **Graphe Theory**

Even/odd cycles Erdős-Pósa property

## Set Theory

Sperner Lemma Erdős extension Tarski Theorem

## **Coding Theory**

Graham-Sloane bound Varshamov bound

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).

 $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).
  - $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .
  - $\hookrightarrow$  No lower bound on  $\max(G)$ .

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).
  - $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .
  - $\hookrightarrow$  No lower bound on  $\max(G)$ .
  - $\hookrightarrow$  Few results on  $\min(G)$ .

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).
  - $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .
  - $\hookrightarrow$  No lower bound on  $\max(G)$ .
  - $\hookrightarrow$  Few results on  $\min(G)$ .
  - $\hookrightarrow$  Positive cycles are rather well understood.

**Conjecture :** max(G) can be bounded according to the maximum number of vertex-disjoint positive cycles in G.

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).
  - $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .
  - $\hookrightarrow$  No lower bound on  $\max(G)$ .
  - $\hookrightarrow$  Few results on  $\min(G)$ .
  - $\hookrightarrow$  **Positive cycles** are rather well understood.
  - $\hookrightarrow$  Negative cycles much less understood.

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).
  - $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .
  - $\hookrightarrow$  No lower bound on  $\max(G)$ .
  - $\hookrightarrow$  Few results on  $\min(G)$ .
  - $\hookrightarrow$  **Positive cycles** are rather well understood.
  - $\hookrightarrow$  Negative cycles much less understood.
- 3. MANY other dynamical properties have to be considered.

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).
  - $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .
  - $\hookrightarrow$  No lower bound on  $\max(G)$ .
  - $\hookrightarrow$  Few results on  $\min(G)$ .
  - $\hookrightarrow$  **Positive cycles** are rather well understood.
  - $\hookrightarrow$  **Negative cycles** much less understood.

## 3. MANY other dynamical properties have to be considered.

 $\hookrightarrow$  Number of periodic configuration, number of limit cycles.

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).
  - $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .
  - $\hookrightarrow$  No lower bound on  $\max(G)$ .
  - $\hookrightarrow$  Few results on  $\min(G)$ .
  - $\hookrightarrow$  **Positive cycles** are rather well understood.
  - $\hookrightarrow$  **Negative cycles** much less understood.

## 3. MANY other dynamical properties have to be considered.

- $\hookrightarrow$  Number of periodic configuration, number of limit cycles.
- $\hookrightarrow$  Length of limite cycles and transitory phases.

- 1. BNs are classical models for complexe systems : easy to define, but hard to predict.
- 2. Central question : What can be said on the dynamics of a BN f according to its interaction graph G?
- **3.** We study fixed points, through min(G) and max(G).
  - $\hookrightarrow$  Interesting upper bound on  $\max(G)$ .
  - $\hookrightarrow$  No lower bound on  $\max(G)$ .
  - $\hookrightarrow$  Few results on  $\min(G)$ .
  - $\hookrightarrow$  **Positive cycles** are rather well understood.
  - $\hookrightarrow$  **Negative cycles** much less understood.

## 3. MANY other dynamical properties have to be considered.

- $\hookrightarrow$  Number of periodic configuration, number of limit cycles.
- $\hookrightarrow$  Length of limite cycles and transitory phases.
- $\hookrightarrow \mathsf{Reachability}$

55/56

## **Gracias**!