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A Boolean network (BN) is a discrete dynamical system containing a
finite number of binary variables which evolve, in a discrete time and
through mutual interactions, according to a fixed law.
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A Boolean network (BN) is a discrete dynamical system containing a
finite number of binary variables which evolve, in a discrete time and
through mutual interactions, according to a fixed law.

↪→ The variables/components are indexed from 1 to n.

↪→ The set of possible states/configurations is {0, 1}n ,

Example with n = 3

{0, 1}3 =
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A Boolean network with n components is a function

f : {0, 1}n → {0, 1}n

x = (x1, . . . , xn) 7→ f (x ) = (f1(x ), . . . , fn(x ))

global transition function

(evolution law)

local transition functions

(from {0, 1}n to {0, 1})

The dynamic is given by the successive iterations of f :

x → f (x )→ f 2(x )→ f 3(x )→ · · ·

A fixed point is a configuration x such that x = f (x ).

fixed points = stable states
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Example 1 with n = 3

 f1(x ) = x2 ∨ x3
f2(x ) = x1 ∧ x3
f3(x ) = x3 ∧ (x1 ∨ x2)

x f (x)

000 000
001 110
010 101
011 110
100 001
101 100
110 101
111 100

000 110

101

100

001

011

010

111

Exercise : What is the nb of BNs with n components ?→ (2n)(2
n) = 2n2n
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The signed interaction graph of f is the signed digraph G defined by :

- the set of vertices is {1, . . . ,n}

- there is a positive arc j → i if there is x ∈ {0, 1}n such that

fi(x1, . . . , xj−1,0, xj+1, . . . , xn) = 0
fi(x1, . . . , xj−1,1, xj+1, . . . , xn) = 1

- there is a negative arc j → i if there is x ∈ {0, 1}n such that

fi(x1, . . . , xj−1,0, xj+1, . . . , xn) = 1
fi(x1, . . . , xj−1,1, xj+1, . . . , xn) = 0
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Example 1

 f1(x ) = x2 ∨ x3
f2(x ) = x1 ∧ x3
f3(x ) = x3 ∧ (x1 ∨ x2)

x f (x)
000 000
001 110
010 101
011 110
100 001
101 100
110 101
111 100

Dynamic

000 110

101

100

001

011

010

111

Interaction graph

1 2

3
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Example 2

 f1(x ) = x2 ∧ x3
f2(x ) = x1 ∨ x3
f3(x ) = x3 ∨ (x1 ∧ x2)

x f (x)
000 011
001 010
010 011
011 110
100 001
101 010
110 001
111 111

Dynamic

111 001

010

011

110

100

101

000

Interaction graph

1 2

3
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Example 3

 f1(x ) = x2 ∨ x3
f2(x ) = x1 ∨ x3
f3(x ) = x3 ∨ (x1 ∧ x2)

x f (x)
000 011
001 110
010 111
011 110
100 001
101 110
110 101
111 111

Dynamic

111 110 101

010

111

011

100

001

Interaction graph

1 2

3
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Example 4

 f1(x ) = x2 ∨ x3
f2(x ) = x1 ∧ x3
f3(x ) = x3 ∧ (x1 ∨ x2)

x f (x)
000 000
001 100
010 100
011 101
100 000
101 110
110 101
111 111

Dynamic

000 110 101 111

100 011

001 010

Interaction graph

1 2

3
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Example 5

 f1(x ) = x2 + x3
f2(x ) = x1 ∧ x3
f3(x ) = x3 ∧ (x1 ∨ x2)

x f (x)
000 000
001 100
010 100
011 001
100 000
101 110
110 101
111 011

Dynamic

000 110 100

100

001 010

011

111 Interaction graph

1 2

3
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Example 6

 f1(x ) = x2 + x3
f2(x ) = x3 + x1
f3(x ) = x1 + x2()

x f (x)
000 000
001 110
010 101
011 011
100 011
101 101
110 110
111 000

Dynamic

000 011 101 110

001010100111

Interaction graph

1 2

3
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1 2

3

1 2

3

1 2

3

1 2

3

Exercise : What is the nb of signed digraphs with n vertices ?

→ 4n2

.
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]

- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
1. according to its interaction graph only ?

2. What can be said on the nb of fixed points of a Boolean network
2. according to its interaction graph only ?

Adrien Richard Fixed points and feedback cycles in Boolean networks IWBN 2020 Satellite School - Concepción, Chile 13/56



In the context of gene networks, the first reliable informations
often concern the interaction graph
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]

- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
1. according to its interaction graph only ?

2. What can be said on the nb of fixed points of a Boolean network
2. according to its interaction graph only ?

Difficult question

↪→ the nb of BNs on a given interaction graph G is (generally) HUGE.

↪→ 2n2n

Boolean networks with n components

↪→ 4n2

interaction graphs with n vertices

↪→ the nb of BNs on a random interaction graph G is doubly exponential.
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Many applications, in particular :
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]

- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
1. according to its interaction graph only ?

2. What can be said on the nb of fixed points of a Boolean network
2. according to its interaction graph only ?

Number of fixed points in the gene
network of a multicellular organism ≈ Number of cellular types

in the organism
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Definitions

max(G) := maximum number of fixed points in a BN on G

min(G) := minimum number of fixed points in a BN on G
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Definitions

max(G) := maximum number of fixed points in a BN on G

min(G) := minimum number of fixed points in a BN on G

K+
3

1 2

3

8 possible BNs

max(K+
3 ) = 2

min(K+
3 ) = 2
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Definitions
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min(G) := minimum number of fixed points in a BN on G

K+
3

1 2

3

8 possible BNs

max(K+
3 ) = 2

min(K+
3 ) = 2

There are 8 possibles BNs on K+
3 , since

f1(x ) = x2 ∧ x3 or f1(x ) = x3 ∨ x3

f2(x ) = x1 ∧ x3 or f2(x ) = x1 ∨ x3

f3(x ) = x1 ∧ x2 or f3(x ) = x1 ∨ x2
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Definitions

max(G) := maximum number of fixed points in a BN on G

min(G) := minimum number of fixed points in a BN on G

K+
3

1 2

3

8 possible BNs

max(K+
3 ) = 2

min(K+
3 ) = 2

x f (x) f (x) f (x) f (x) f (x) f (x) f (x) f (x)
000 000 000 000 000 000 000 000 000
001 000 100 010 110 000 100 010 110
010 000 100 000 100 001 101 001 101
011 100 100 110 110 101 101 111 111
100 000 000 010 010 001 001 011 011
101 010 110 010 110 011 111 011 111
110 001 101 011 111 001 101 011 111
111 111 111 111 111 111 111 111 111
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Definitions

max(G) := maximum number of fixed points in a BN on G

min(G) := minimum number of fixed points in a BN on G

K−3

1 2

3

8 possible BNs

max(K−3 ) = 3

min(K−3 ) = 1
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Definitions

max(G) := maximum number of fixed points in a BN on G

min(G) := minimum number of fixed points in a BN on G

K−3

1 2

3

8 possible BNs

max(K−3 ) = 3

min(K−3 ) = 1

x f (x) f (x) f (x) f (x) f (x) f (x) f (x) f (x)
000 111 111 111 111 111 111 111 111
001 001 101 011 111 001 101 011 111
010 010 110 010 110 011 111 011 111
011 000 000 010 010 001 001 011 011
100 100 100 110 110 101 101 111 111
101 000 100 000 100 001 101 001 101
110 000 100 010 110 000 100 010 110
111 000 000 000 000 000 000 000 000
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Definitions

max(G) := maximum number of fixed points in a BN on G

min(G) := minimum number of fixed points in a BN on G

K−3
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3

8 possible BNs

max(K−3 ) = 3

min(K−3 ) = 1

x f (x) f (x) f (x) f (x) f (x) f (x) f (x) f (x)
000 111 111 111 111 111 111 111 111
001 001 101 011 111 001 101 011 111
010 010 110 010 110 011 111 011 111
011 000 000 010 010 001 001 011 011
100 100 100 110 110 101 101 111 111
101 000 100 000 100 001 101 001 101
110 000 100 010 110 000 100 010 110
111 000 000 000 000 000 000 000 000
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1 2

3

8 BNs

max(K+
3 ) = 2

min(K+
3 ) = 2

1 2

3

8 BNs

max(K−
3 ) = 3

min(K−
3 ) = 1

1 2

3

45

6

∼ 1041 BNs

4 ≤ max(K+
6 ) ≤ 16

min(K+
6 ) = 2

1 2

3

45

6

∼ 1041 BNs

max(K−
6 ) = 20

min(K+
6 ) = 0
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Outline

1. Absence of cycle

2. Positive and negative cycles

3. Absence of positive/negative cycle

4. Positive feedback bound

5. Positive and negative cliques

6. The monotone case

7. Conclusion
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1 2 3

4 5

6 7 8

9 10

G

stabilization

Theorem [Robert, 1980]

If G is acyclic then f n is a constant function, thus

min(G) = max(G) = 1.
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Theorem [Robert, 1980]
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stabilization

Theorem [Robert, 1980]
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min(G) = max(G) = 1.

Adrien Richard Fixed points and feedback cycles in Boolean networks IWBN 2020 Satellite School - Concepción, Chile 17/56



0 1 1iteration 1

1 0iteration 2

0 1 1iteration 3

1 1iteration 4

constant local functions

stabilization

Theorem [Robert, 1980]

If G is acyclic then f n is a constant function, thus

min(G) = max(G) = 1.
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Example 1

 f1(x ) = 0
f2(x ) = x1
f3(x ) = x1 ∧ x2

x f (x)
000 010
001 010
010 010
011 010
100 000
101 000
110 001
111 001

Dynamic

010

000 001 011

100 101 110 111

Interaction graph

1

2

3
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Example 2

 f1(x ) = 0
f2(x ) = x1
f3(x ) = x1 ∨ x2

x f (x)
000 010
001 010
010 011
011 011
100 001
101 001
110 001
111 001

Dynamic

011

010

000 001

001 001 001 001

Interaction graph

1

2

3
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François Robert [1980]

no cycle ⇒ “simple” dynamic

“complexe” dynamic ⇒ cycles

René Thomas [1981] : two type of cycles, positive and negative.
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1. Positive cycle : even number of negative arcs

•
•• ••

••

•

••

•

2. Negative cycle : even number of negative arcs

•
•• ••

••

•

••

•
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Outline

1. Absence of cycle

2. Positive and negative cycles

3. Absence of positive/negative cycle

4. Positive feedback bound

5. Positive and negative cliques

6. The monotone case

7. Conclusion
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In a cycle, each vertex i has a unique in-neighbor j , and

fi(x ) =

{
xj if j → i is positive

xj if j → i is negative

Example
1

2

34

5

f1(x ) = x5
f2(x ) = x1
f3(x ) = x2
f4(x ) = x3
f5(x ) = x4
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Fixed points for a positive cycle

1

2

34

5

f1(x ) = x5
f2(x ) = x1
f3(x ) = x2
f4(x ) = x3
f5(x ) = x4

x = f (x ) ⇐⇒


x1 = x5
x2 = x1
x3 = x2

= x1

x4 = x3

= x1

x5 = x4

= x1

⇐⇒ x = (x1, x1, x1, x1, x1)

There are exactly two fixed points : 00100 and 11011.
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Fixed points for a positive cycle

0

0

10

0

1

1

01

1

f1
f2
f3
f4
f5

x = f (x ) ⇐⇒


x1 = x5
x2 = x1
x3 = x2 = x1
x4 = x3 = x1
x5 = x4 = x1

⇐⇒ x = (x1, x1, x1, x1, x1)

There are exactly two fixed points : 00100 and 11011.
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Fixed points for a negative cycle

1

2

34

5

f1(x ) = x5
f2(x ) = x1
f3(x ) = x2
f4(x ) = x3
f5(x ) = x4

x = f (x ) ⇐⇒


x1 = x5
x2 = x1
x3 = x2

= x1

x4 = x3

= x1

x5 = x4

= x1

⇒ contradiction

There is no fixed point !
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Proposition

1. If G is a positive cycle,

min(G) = max(G) = 2.

1. If G is a negative cycle,

min(G) = max(G) = 0.
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Theorem [Aracena, 2008]

Let G be an interaction graph.

1. If G has only positive cycles, then min(G) ≥ 1.

2. If G has only negative cycles, then max(G) ≤ 1.

Let G be a strongly connected interaction graph.

3. If G has only positive cycles, then min(G) ≥ 2.

4. If G has only negative cycles, then max(G) = 0.

Corollary [Robert 1980]

If G is acyclic, then min(G) = max(G) = 1.
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LOCAL LEMMA

situation in state x

i

1 1 1 0 0 1

situation in state y

i

1 0 0 1 0 1

Question : Can we compare fi(x ) et fi(y) ?

Réponse : Yes ! We have fi(x) ≥ fi(y).
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) ≤ 1.

Proof. Let f be a BN on G and let x and y be distinct fixed points of f .

1. For all vertex i we set vi := yi − xi .

2. If vi 6= 0 then i has an in-coming arc j → i with sign vj vi .

Proof. Suppose that xi < yi , that is, vi = 1, the other case is similar.

xj ≥ yj for all j → i

xj ≤ yj for all j → i

}
⇒ fi(x ) ≥ fi(y) ⇒ xi ≥ yi ⇒ <>

situation in state x

i

1 1 1 0 0 1

situation in state y

i

1 0 0 1 0 1

fi(x ) ≥ fi(y)

1. Thus there is j → i with xj < yj or j → i with xj > yj .

1. Thus there is j → i with vj = 1 or j → i with vj = −1.

1. Thus there is j → i with sign vj vi . �

3. There is a cycle i0i1i2 . . . i`i0 where the sign of ik → ik+1 is vik vik+1
.

i0

i1

i2i3

i4

vi0vi1

vi1vi2

vi2vi3

vi3vi4

vi4vi0

4. The sign s of this cycle is s = (v0v1) · (v1v2) · (v2v3) · . . . (·v`v0) = 1.

�
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�
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Theorem [Aracena, 2008]

Let G be an interaction graph.

1. If G has only positive cycles, then min(G) ≥ 1.

2. If G has only negative cycles, then max(G) ≤ 1.

Let G be a strongly connected interaction graph.

3. If G has only positive cycles, then min(G) ≥ 2.

4. If G has only negative cycles, then max(G) = 0.

For all x , y ∈ {0, 1}n , we set ∆(x , y) := {i ∈ [n] : xi 6= yi}.

Positive cycle lemma. If x and y are distinct fixed points of f , then

G [∆(x , y)] has a positive cycle.
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Question : Is it difficult to decide if G has a positive/negative cycle ?

↪→ Reduction to the strongly connected case

G

• •

•

→ D

•
•

•

•

•

•

G has a positive cycle ⇐⇒ D has an even cycle

G has a negative cycle ⇐⇒ D has an odd cycle
⇐⇒ D is not bipartite

O(nd)

O(n2)
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G

• •

•

→ D

•
•

•

•

•

•

G has a positive cycle ⇐⇒ D has an even cycle

G has a negative cycle ⇐⇒ D has an odd cycle
⇐⇒ D is not bipartite

O(nd)

O(n2)

We can decide in O(n2) if D is bipartite :

1. We take a spanning tree T ⊆ D , and a proper 2-coloring c of T .

2. D is bipartite ⇐⇒ c is a proper coloring of D .
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Question : Is it difficult to decide if G has a positive/negative cycle ?

↪→ Reduction to the strongly connected case

G

• •

•

→ D

•
•

•

•

•

•

G has a positive cycle ⇐⇒ D has an even cycle

G has a negative cycle ⇐⇒ D has an odd cycle
⇐⇒ D is not bipartite

O(nd)

O(n2)

Theorem [Robertson-Seymour-Thomas, 1999 ; McCuaig 2004]

We can decide in polynomial time if D has an even cycle.
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Outline

1. Absence of cycle

2. Positive and negative cycles

3. Absence of positive/negative cycle

4. Positive feedback bound

5. Positive and negative cliques

6. The monotone case

7. Conclusion
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We have seen that

G acyclic ⇒ G without positive cycle ⇒ max(G) ≤ 1

Do we have something of the form

G is not so far from being acyclic ⇒ max(G) is not too large ?

How define a distance to acyclicity ?

↪→ number of cycles ?

↪→ min bn of vertices to delete
↪→ to make the graph acyclic ?
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τ (G) := transversal number

:= min size of a set of vertices intersecting every cycle

:= minimum size of a Feedback Vertex Set (FVS)

•

•

•

•

• •

•

••

• •

τ = 1 τ = 2 τ = 3

τp(G) := positive transversal number
:= min size of a set of vertices intersecting every positive cycle

•

•

•

•

τ = 1
τp = 0

•

•

•

•

τ = 1
τp = 1

Remark 1 τp ≤ τ (equality when all arcs are positive)

Remark 2 τ and τp are invariant by subdivisions of arcs
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Positive Feedback Bound [Aracena 2008]

max(G) ≤ 2τp ≤ 2τ

G

Positive FVS S of size τp

Remark G has no positive cycle ⇒ τp = 0 ⇒ max(G) ≤ 1

This is the only upper bound on max(G)
that only depend on the cycle structure

No lower bound on max(G) !
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Theorem [Aracena, 2008]

Let G be an interaction graph.

1. If G has only positive cycles, then min(G) ≥ 1.

2. If G has only negative cycles, then max(G) ≤ 1.

3. More generally, max(G) ≤ 2τp .

Let G be a strongly connected interaction graph.

4. If G has only positive cycles, then min(G) ≥ 2.

5. If G has only negative cycles, then max(G) = 0.

Remarks

– No general lower bound on max(G).

– Few results on min(G).

Theorem [Bridoux-Durbec-Perrot-R., 2019]

1. It is polynomial to decide if max(G) ≥ 1.

2. It is NP-complete to decide if max(G) ≥ 2.

3. It is NEXPTIME-complete to decide if min(G) = 0.
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The bound 2τp is very perfectible

• •
•

•
•

•
•

· · · • •
•

max(G) ∼ 2n/6

2τp ∼ 2n/4

• •
•

•
•

•
•

· · · • •
•

max(G) = 1

2τp ∼ 2n/4

How introduce negative cycles in the bound ?

↪→ Difficult problem : positive cycles are sometime favorable
↪→ ... and sometime unfavorable to the presence of many fixed points.

1 2

3

max(K+
3 ) = 2

1 2

3

max(K−3 ) = 3
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Two approaches :

1. Fixe the graph and make variations on signs → clique Kn .

2. Fixe the signs and make variations of the graphs → all arcs positive.
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Outline

1. Absence of cycle

2. Positive and negative cycles

3. Absence of positive/negative cycle

4. Positive feedback bound

5. Positive and negative cliques

6. The monotone case

7. Conclusion
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1 2

3

8 BNs

max(K+
3 ) = 2

2τp = 22 = 4

1 2

3

8 BNs

max(K−3 ) = 3

2τp = 22 = 4

1 2

3

45

6

∼ 1041 BNs

4 ≤ max(K+
6 ) ≤ 16

2τp = 25 = 32

1 2

3

45

6

∼ 1041 BNs

max(K−6 ) = 20

2τp = 25 = 32
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Definitions

1. The Hamming distance between two states x , y ∈ {0, 1}n is

dH (x , y) := #∆(x , y) := #{i ∈ [n] : xi 6= yi}.

Example
x = 00110011
y = 11110000

dH (x , y) = 4.

2. We define the partial order ≤ on {0, 1}n by :

x ≤ y ⇐⇒ xi ≤ yi ∀i ∈ [n].

3. A chain is a set of pairwise comparable states.

4. An antichain is a set of pairwise incomparable states.
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Theorem [Gadouleau-R-Riis, 2015](
n
b n2 c
)

n
≤ max(K+

n ) ≤ 2n+1

n + 2
≤ max(K−

n ) =

(
n

bn2 c

)
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Remark : In both cases, the positive feedback bound is 2n−1, while(
n

bn2 c

)
= O(2n−log n) = o(2n−1)
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Lower bound for the positive clique
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↪→ There is a BN on K+
n that fixes A ; thus max(K+

n ) ≥ |A|.

Graham-Sloane Bound [1980]

It exists A ⊆ L(n, k) with dH (x , y) ≥ 4 for all distinct x , y ∈ A such that

|A| ≥
(
n
k

)
n
.
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n
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n + 2
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n ) =

(
n

bn2 c

)

Upper bound for the positive clique

Let f be a BN on K+
n . If x and y are distinct fixed points of f , then

dmax(x , y) := max( |{i : xi < yi}| , |{i : xi > yi}| ) ≥ 2.

Varshamov Bound [1965]

If A ⊆ {0, 1}n and dmax(x , y) ≥ 2 for all distinct x , y ∈ A distincts, then

|A| ≤ 2n+1

n + 2
.
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Equality for the negative clique

Let f be a BN on K−n . we have x ≤ y ⇒ f (x ) ≥ f (y).

Thus if x and y are fixed points, we have x ≤ y ⇒ f (x ) ≥ f (y)⇒ x ≥ y .

Fixed points are pairwise incomparable : they form an antichain.

Sperner Lemma [1928]

The maximum size of an antichain of {0, 1}n is
(

n
b n2 c
)
.

Thus max(K−n ) ≤
(

n
b n2 c
)

; the bound is reached by the “minority” network.
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max(K−n )

max(K+
n )

n

unbounded

Corollary. For all fixed k and
sufficiently large n,

max(K−n ) > max(K+
n+k ).
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Theorem [Gadouleau-R-Riis, 2015](
n
b n2 c
)

n
≤ max(K+

n ) ≤ 2n+1

n + 2
≤ max(K−

n ) =

(
n

bn2 c

)

Conjecture

If K σ
n is a signed clique with n vertices,

max(K σ
n ) ≤ max(K−n )
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Two approaches :

1. Fixe the graph and make variations on signs → clique Kn .

2. Fixe the signs and make variations of the graphs → all arcs positive.
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Outline

1. Absence of cycle

2. Positive and negative cycles

3. Absence of positive/negative cycle

4. Positive feedback bound

5. Positive and negative cliques

6. The monotone case

7. Conclusion
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1. What happens when there are only positive cycles ?

↪→ In that case, 2τp = 2τ

2. What happens when there are only positive arcs ?

Proposition

1. Suppose that G is strongly connected and has only positive cycles.

1. Let G+ be obtained from G by making positive every arc. Then

max(G) = max(G+).

2. Furthermore, every BN f on G+ is monotone, that is,

∀x , y ∈ {0, 1}n x ≤ y ⇒ f (x ) ≤ f (y).
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Theorem [Knaster-Tarski, 1928]

If f is monotone then Fix(f ) is a non-empty lattice. In particular, f has a
unique minimal fixed point and a unique maximal fixed point (wrt ≤).

ν(G) := “packing number”
:= maximum size of a set of pairwise vertex-disjoint cycles

• •

•

• •

••

••

• •
ν = 1 ν = 2 ν = 2
τ = 2 τ = 3 τ = 2

Remark ν ≤ τ
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Theorem [Aracena-Salinas-R, 2017]

If f is monotone, Fix(f ) is isomorphic to a subset L ⊆ {0, 1}τ such that

1. L is a non-empty lattice

2. L has no chain of size ν + 2

Proof of the isomorphism ∀x , y ∈ Fix(f ) xS ≤ yS ⇐⇒

=⇒

x ≤ y

Fix(f ) ∼= L := {xS : x ∈ Fix(f )} (L ⊆ {0, 1}S )

• • •

• •

• • •

1 1 0

• •

• • •
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Theorem [Erdős, 1945]

If A ⊆ {0, 1}n has no chain of size `+ 1 then

|A| ≤ sum of the ` largest binomial coefficient
(
n
k

)

Remark The case ` = 1 is Sperner Lemma on antichains
Corollary If f is monotone then

|Fix(f )| − 2 ≤ sum of the ν − 1 largest binomial coefficients
(
τ
k

)
Proof Let L ⊆ {0, 1}τ a non-empty lattice isomorphic to Fix(f )

•

•

max a

min b

L
no chain of
size ν + 2

≤ sum of the ν − 1 largest
(
τ
k

)
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Corollary max(G+) ≤ sum of the ν − 1 largest
(
τ
k

)
+ 2

2τ

(
τ
0

) (
τ
τ/2

) (
τ
τ

)

ν − 1 coefficients

τ − 1 coefficients

Corollary max(G+) = 2τ ⇒ ν = τ

The bound is interesting when ν is small compared with τ

The largest gap we known is ν log ν ≤ 30τ [Alon-Seymour 93]

For fixed ν, τ cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995]

It exists h : N→ N such that, for every digraph G ,

τ ≤ h(ν)

The bound given on h(ν) is huge (iterated use of Ramsey theorem)

Corollary max(G) ≤ 2τp ≤ 2τ ≤ 2h(ν)

Conjecture max(G) ≤ 2O(ν log ν)
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1. BNs are classical models for complexe systems : easy to define,
but hard to predict.

2. Central question : What can be said on the dynamics of a BN f
according to its interaction graph G ?

3. We study fixed points, through min(G) and max(G).

↪→ Interesting upper bound on max(G).

↪→ No lower bound on max(G).

↪→ Few results on min(G).

↪→ Positive cycles are rather well understood.

↪→ Negative cycles much less understood.

3. MANY other dynamical properties have to be considered.

↪→ Number of periodic configuration, number of limit cycles.

↪→ Length of limite cycles and transitory phases.

↪→ Reachability

Graphe Theory

Even/odd cycles
Erdős-Pósa property

Set Theory

Sperner Lemma
Erdős extension
Tarski Theorem

Coding Theory

Graham-Sloane bound
Varshamov bound

Conjecture : max(G) can be bounded according to the maximum
Conjecture : number of vertex-disjoint positive cycles in G .
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Erdős-Pósa property

Set Theory

Sperner Lemma
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Conjecture : max(G) can be bounded according to the maximum
Conjecture : number of vertex-disjoint positive cycles in G .
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Erdős-Pósa property

Set Theory

Sperner Lemma
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