Conjunctive networks

Complexity of limit cycle problems with different schedules

Julio Aracena, Florian Bridoux, Luis Gómez, Lilian Salinas

Boolean networks and interaction digraph

Boolean networks:

- Global function: $f: \{0,1\}^n \rightarrow \{0,1\}^n$.
- Local functions: $f_1, \ldots, f_n : \{0,1\}^n \to \{0,1\}.$
- $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$

Local functions:

- $f_1: x \mapsto 1$.
- $f_2: x \mapsto x_2$.
- $f_3: x \mapsto x_1 \vee x_2$.

Interaction digraph D_f :

2/18

$$\mathcal{N}^{\text{in}}(1) = \emptyset, \mathcal{N}^{\text{in}}(2) = \{x_2\} \text{ and } \mathcal{N}^{\text{in}}(3) = \{x_1, x_2\}.$$

Conjunctive networks

A conjunctive networks $f: \{0,1\}^n \rightarrow \{0,1\}^n$:

$$\forall j \in [n], f_j : x \mapsto \bigvee_{i \in \mathbb{N}^{\text{in}}(j)} x_i$$

(if
$$\mathbb{N}^{\mathrm{in}}(j) = \emptyset$$
, $f_j(x) = 0$).

Local functions:

- $f_1: x \mapsto 0$.
- $f_2: x \mapsto x_2$.
- $f_3: x \mapsto x_1 \vee x_2$.

Interaction digraph D_f :

3/18

Limit cycles

 $x \in \{0,1\}^n$ is in a limit cycle of f of length k if

- $\forall 1 \leq q < k, f^q(x) \neq x$, and
- $\forall f^k(x) = x$.

Notations:

- $\phi_k(f)$: number of limit cycles of length k of f: .
- $\Phi_k(f)$: configurations in a limit cycle of length k of f:

We have $\phi_k(f) = |\Phi_k(f)|/k$.

Decision problems

For any constant k, we define the following problems.

Definition: k-Parallel Limit Cycle problem (k-PLC)

Given a conjunctive network f, does $\phi_k(f) \geq 1$?

Definition: k-Block-sequential Limit Cycle problem (k-BLC)

Given a conjunctive network f, does there exist a block-sequential schedule w such that $\phi_k(f^w) \geq 1$?

Definition: k-Sequential Limit Cycle problem (k-SLC)

Given a conjunctive network f, does there exist a sequential schedule w such that $\phi_k(f^w) \ge 1$?

Remark

All this problems are trivial for k = 1.

Theorem

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

See: Disjunctive networks and update schedules, Eric Goles and Mathilde Noual, 2011.

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

When D_f is strongly connected, it is equivalent to know if there exists a function $c:[n] \to [0,k-1]$ such that for all $i,j \in [n]$, $i \in \mathbb{N}^{\text{in}}(j) \implies c(j) = c(i) + 1 \mod k$.

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

When D_f is strongly connected, it is equivalent to know if there exists a function $c:[n] \to [0,k-1]$ such that for all $i,j \in [n]$, $i \in \mathbb{N}^{\text{in}}(j) \implies c(j) = c(i) + 1 \mod k$.

Example: 2-PLC problem for the two following interaction digraphs.

Florian BRIDOUX Conjunctive networks 2020 7/18

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

When D_f is strongly connected, it is equivalent to know if there exists a function $c:[n] \to [0,k-1]$ such that for all $i,j \in [n]$, $i \in \mathbb{N}^{\text{in}}(j) \implies c(j) = c(i) + 1 \mod k$.

Example: 2-PLC problem for the two following interaction digraphs.

Florian BRIDOUX Conjunctive networks 2020 7/18

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

When D_f is strongly connected, it is equivalent to know if there exists a function $c:[n] \to [0,k-1]$ such that for all $i,j \in [n]$, $i \in \mathbb{N}^{\text{in}}(j) \implies c(j) = c(i) + 1 \mod k$.

Example: 2-PLC problem for the two following interaction digraphs.

Florian BRIDOUX Conjunctive networks 2020 7/18

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

When D_f is strongly connected, it is equivalent to know if there exists a function $c:[n] \to [0,k-1]$ such that for all $i,j \in [n]$, $i \in \mathbb{N}^{\text{in}}(j) \implies c(j) = c(i) + 1 \mod k$.

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

When D_f is strongly connected, it is equivalent to know if there exists a function $c:[n] \to [0,k-1]$ such that for all $i,j \in [n]$, $i \in \mathbb{N}^{\mathrm{in}}(j) \Longrightarrow c(j) = c(i) + 1 \mod k$.

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

When D_f is strongly connected, it is equivalent to know if there exists a function $c:[n] \to [0,k-1]$ such that for all $i,j \in [n]$, $i \in \mathbb{N}^{\mathrm{in}}(j) \Longrightarrow c(j) = c(i) + 1 \mod k$.

For all $k \ge 2$, The k-PLC problem can be resolved in polynomial time.

When D_f is strongly connected, it is equivalent to know if there exists a function $c:[n] \to [0,k-1]$ such that for all $i,j \in [n]$, $i \in \mathbb{N}^{\mathrm{in}}(j) \Longrightarrow c(j) = c(i) + 1 \mod k$.

Proof of: c exists $\Rightarrow \phi_k(f) \geq 1$.

$$x^{(t)}: \forall i \in [n], c(i) = t \iff x_i^{(t)} = 1.$$

$$x_i^{(0)}$$
 $\xrightarrow{f} x_i^{(1)}$ $\xrightarrow{f} x_i^{(2)}$ $\xrightarrow{f} x_i^{(3)}$ $\xrightarrow{f} x_i^{(0)}$
10000 $\xrightarrow{f} 01100$ $\xrightarrow{f} 00010$ $\xrightarrow{f} 00001$ $\xrightarrow{f} 10000$

Proof of: $\phi_k(f) \geq 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

 $p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$

Proof of: $\phi_k(f) \geq 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

$$p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$$

Proof of: $\phi_k(f) \geq 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

$$p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$$

Proof of: $\phi_k(f) \ge 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

$$p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$$

Proof of: $\phi_k(f) \ge 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

$$p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$$

Proof of: $\phi_k(f) \ge 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

$$p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$$

Proof of: $\phi_k(f) \geq 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

$$p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$$

Proof of: $\phi_k(f) \geq 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

$$p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$$

Proof of: $\phi_k(f) \ge 1 \Rightarrow c$ exists .

Let $x \in \Phi_k(f)$. Periodic trace: for all $i \in [n]$,

$$p^{i}(x) = (x_{i}, f_{i}(x), f_{i}^{2}(x)), \dots, (f_{i}^{k-1}(x)))$$

In this example, consider that $i \in [2]$ with the maximum 1 in its periodic trace is 2.

Is to possible to have $0 \rightarrow 2$ for example?

⇒ No, because otherwise the period would not be minimum.

k-BLC et k-SLC

Lemma [Eric Goles and Mathilde Noual, 2011]

For any disjunctive network f, there exists a block-sequential update schedule w such that f^w only has fixed points.

Theorem

The k-BLC et k-SLC problems are NP-complete.

To resolve these two problems when D_f is strongly connected, it is sufficient to execute the following non-deterministic polynomial time algorithm.

- Chose a (block)-sequential update schedule w.
- Chose a configuration $x \in \{0,1\}^n$.
- Verify that $(f^w)^k(x) = x$ and that for all $q \in [1, k-1], (f^w)^q(x) \neq x$.

This problems are thus in NP.

2-BLC and 2-SLC

When D_f is strongly connected, it is equivalent to find a update digraph and a function $c:[n] \to [0,k-1]$ such that

- $(j) \xrightarrow{\oplus} (j) \Longrightarrow c(j) = c(i) + 1 \mod k$.
- (i) $\xrightarrow{\ominus}$ (j) \Longrightarrow c(j) = c(i).

Lemma

An upgrade digraph corresponds to a **sequential** update schedule if when we reverse every negative arcs, the digraph becomes acyclic.

Lemma

An upgrade digraph corresponds to a **block-sequential** update schedule if when we reverse every negative arcs, the only remaining cycles are only composed of positive arcs.

2-BLC and 2-SLC

2-BLC and 2-SLC

3-SAT problem: $(\lambda_1 \lor \lambda_2 \lor \lambda_3) \land (\neg \lambda_1 \lor \neg \lambda_2 \lor \lambda_3)$

Florian BRIDOUX Conjunctive networks 2020 13/18

Lemma

Let f be a conjunctive network and k an integer. Then, $\phi_k(f^{(w_1...w_{n-1}w_n)}) = \phi_k(f^{(w_nw_1...w_{n-1})}).$

Results:

- The k-PLC problem can be resolved in polynomial time.
- The k-BLC and k-SLC problems are NP-complete for any $k \geq 2$.

Ongoing:

Not strongly connected.

Future works:

- Does the complexity change when k is not a constant but a problem parameter?
- The problem of computing $\phi_k(f^w)$ is it difficult?