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Boolean networks and interaction digraph

Boolean networks:
@ Global function: f: {0,1}" — {0,1}".
e Local functions: f1,...,f,: {0,1}" — {0,1}.
o f(x)=(f(x),(x),...,M(x))

Local functions: Interaction digraph Dy:

e f1 :xm— 1.
@ fh:xr— Xxo.

@ f3:x 1 x1Vxo.

NIB(1) = 0, N"(2) = {x2} and N'"(3) = {x1, %2}
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Conjunctive networks

A conjunctive networks f : {0,1}" — {0,1}"
Vjieln,fjix— \/ X;
iENin ()

(if Nn(j) = 0, £i(x) =0).

Local functions: Interaction digraph Ds:
e f1:x—0.
0 x> Xx.

@ f3:x 1 x1Vxo.
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Limit cycles

x € {0,1}" is in a limit cycle of f of length k if

o V1< gq< k,f(x)# x, and

o Vfk(x) = x.
Notations:

@ ¢k(f): number of limit cycles of length k of f: .

e ®,(f): configurations in a limit cycle of length k of f:
We have ¢i(f) = |®(F)|/k.
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Decision problems

For any constant k, we define the following problems.

Definition: k-Parallel Limit Cycle problem (k-PLC)

Given a conjunctive network f, does ¢ (f) > 17

Definition: k-Block-sequential Limit Cycle problem (k-BLC)

Given a conjunctive network f, does there exist a block-sequential
schedule w such that ¢, (") > 1?7

Definition:k-Sequential Limit Cycle problem (k-SLC)

Given a conjunctive network f, does there exist a sequential
schedule w such that ¢, (") > 17

V.

All this problems are trivial for kK = 1.
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k-PLC

For all k > 2, The k-PLC problem can be resolved in polynomial
time.

See: Disjunctive networks and update schedules, Eric Goles and
Mathilde Noual, 2011.
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k-PLC

For all k > 2, The k-PLC problem can be resolved in polynomial
time.

When D is strongly connected, it is equivalent to know if there
exists a function ¢ : [n] — [0, k — 1] such that for all i, € [n],
i€ Nn(j) = c(j) =c(i) +1 mod k.

Example: 2-PLC problem for the two following interaction
digraphs.
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k-PLC

Proof of: ¢ exists = ¢x(f) > 1.

(2)
O 0='0
0 2 3

1

x() Vi€ [n], c(i) = t = x,.(t) =1.
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k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],

P(x) = (i, F(x), £2(x)s - (F2()))

In this example, consider that i € [2] with the maximum 1 in its
periodic trace is 2.

9/18



k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],

P(x) = (i, F(x), £2(x)s - (F2()))

In this example, consider that i € [2] with the maximum 1 in its
periodic trace is 2.

9/18



k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],

P(x) = (i, F(x), £2(x)s - (F2()))

In this example, consider that i € [2] with the maximum 1 in its
periodic trace is 2.

(2)
(1) ()—(5)
7117
)

9/18



k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],

P(x) = (i, F(x), £2(x)s - (F2()))

In this example, consider that i € [2] with the maximum 1 in its
periodic trace is 2.

(2)
(1) L)
)

9/18



k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],

P(x) = (i, F(x), £2(x)s - (F2()))

In this example, consider that i € [2] with the maximum 1 in its
periodic trace is 2.

0110 0011

9/18



k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],

P(x) = (i, F(x), £2(x)s - (F2()))

In this example, consider that i € [2] with the maximum 1 in its
periodic trace is 2.

0110

0011

9/18



k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],

P(x) = (i, F(x), £2(x)s - (F2()))

In this example, consider that i € [2] with the maximum 1 in its
periodic trace is 2.

0110

0011

9/18



k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],

P(x) = (i, F(x), £2(x)s - (F2()))

In this example, consider that i € [2] with the maximum 1 in its
periodic trace is 2.

0011
1 2

9/18



k-PLC

Proof of: ¢x(f) > 1 = c exists .

Let x € ®(f). Periodic trace: for all i € [n],
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Is to possible to have 0 — 2 for example?
— No, because otherwise the period would not be minimum.
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k-BLC et k-SLC

Lemma [ Eric Goles and Mathilde Noual, 2011]

For any disjunctive network f, there exists a block-sequential
update schedule w such that f* only has fixed points.

The k-BLC et k-SLC problems are NP-complete.

To resolve these two problems when Df is strongly connected, it is
sufficient to execute the following non-deterministic polynomial
time algorithm.

@ Chose a (block)-sequential update schedule w.

@ Chose a configuration x € {0,1}".
o Verify that (f*)*(x) = x and that for all
g €L k=1, (F")9(x) # x.
This problems are thus in NP.
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2-BLC and 2-SLC

When Dr is strongly connected, it is equivalent to find a update
digraph and a function c : [n] — [0, k — 1] such that

o (DS () = cli)=c(i)+1 mod k.
o (D= () = clj)=cli).

An upgrade digraph corresponds to a sequential update schedule if
when we reverse every negative arcs, the digraph becomes acyclic.

An upgrade digraph corresponds to a block-sequential update
schedule if when we reverse every negative arcs, the only remaining
cycles are only composed of positive arcs.
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2-BLC and 2-SLC
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Reduction of 2-BLC and 2-SLC from 3-SAT

3-SAT problem: ()\1 VAV )\3) AN (—|)\1 V =A V )\3)
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Reduction of 2-BLC and 2-SLC from 3-SAT

3-SAT problem: (A1 V A2 V A3)
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Reduction of 2-BLC and 2-SLC from 3-SAT

Let f be a conjunctive network and k an integer. Then,
¢k(f(wl..,w,,_1wn)) — ¢k(f(W"W1"'Wn—1))_
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Conclusion

Results:
@ The k-PLC problem can be resolved in polynomial time.

@ The k-BLC and k-SLC problems are NP-complete for any
k> 2.

Ongoing:
@ Not strongly connected.
Future works:

@ Does the complexity change when k is not a constant but a
problem parameter?

@ The problem of computing ¢, (f") is it difficult?
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