

Inverse problems on the blocksequential operator in Boolean networks

Julio Aracena[†], **Luis Cabrera-Crot**^{*}, Adrien Richard[°] and Lilian Salinas⁺

* PhD Student in Computer Science, U. of Concepción, Chile.¹
 † Department of Mathematical Engineering, U. of Concepción, Chile.
 + Department of Computer Science, U. of Concepción, Chile.
 • CRNS and Université Côte dÁzur, France

International Workshop on Boolean Networks January 9th, 2020

¹ Funded by CONICYT-PFCHA/Doctorado Nacional/2016-21160885 < □ + (♂) + (♂) + (≥)

3 Work in progress

Luis Cabrera-Crot et al. (U. Concepción)

Inverse block-sequential operator

IWBN 2020 2 / 31

▲ロ → ▲厨 → ▲ 臣 → ▲ 臣 → ● ● ● ● ●

• Complex Systems

(L. Mendoza and E. Alvarez, 1998)

IWBN 2020 3 / 31

• Boolean networks $f: \{0,1\}^n \rightarrow \{0,1\}^n$

(L. Mendoza and E. Alvarez, 1998)

$$f_1(x) = x_4 f_2(x) = x_1 \land x_2 f_3(x) = x_2 \lor x_3 f_4(x) = x_3 \land x_4$$

▲ロ → ▲厨 → ▲ 臣 → ▲ 臣 → ● ● ● ● ●

(L. Mendoza and E. Alvarez, 1998)

$$f_1(x) = x_4 f_2(x) = x_1 \land x_2 f_3(x) = x_2 \lor x_3 f_4(x) = x_3 \land x_4$$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < の < @

Definition

A *block-sequential schedule* is an ordered partition of the components of a Boolean network which defines the order in which the states of the network are updated in one unit of time.

Examples

$$s_1 = \{3, 4\}\{1\}\{2\},$$

$$s_2 = \{1, 2, 3, 4\},$$

$$s_3 = \{2\}\{3\}\{4\}\{1\}.$$

Given a interaction graph G and a block-sequential schedule s, a labeled digraph (G, s) is a digraph with a labeling function lab_s :

Inverse block-sequential operator

$$s = \{2\} \{3\} \{4\} \{1\}$$

$$G \qquad \mathcal{P}(G, s)$$

$$(2) \qquad (1) \qquad (2) \qquad (1)$$

$$(3) \qquad (4) \qquad (3) \qquad (4)$$

🚺 Parallel digraph

Can be obtained from the labeled digraph. $\forall (u, v) \in V(G) \times V(G), (u, v) \in A(\mathcal{P}(G, s))$ if and only if:

IWBN 2020 7 / 31

🪺 Parallel digraph

Can be obtained from the labeled digraph. $\forall (u, v) \in V(G) \times V(G), (u, v) \in A(\mathcal{P}(G, s))$ if and only if: • (u, v) is labeled \oplus .

🚺 Parallel digraph

Can be obtained from the labeled digraph. $\forall (u, v) \in V(G) \times V(G), (u, v) \in A(\mathcal{P}(G, s))$ if and only if:

- (u, v) is labeled \oplus .
- ∃w ∈ V(G), (u, w) is labeled ⊕ and exists a path from w to v labeled ⊖.

The function that associates (G, s) with the digraph $\mathcal{P}(G, s)$ is called block-sequential operator and can be constructed in polynomial time.

IWBN 2020 8 / 31

Unique solution

IWBN 2020 8 / 31

IWBN 2020 8 / 31

No solution

1 Motivation

Э

10 / 31

(日)

For example, for the schedule $\{1\}$ $\{2\}$, there are three preimages:

Results

For example, for the schedule $\{1\}$ $\{2\}$, there are three preimages:

Let s be a block-sequential schedule and G and G' two digraphs such that $\mathcal{P}(G,s) = \mathcal{P}(G',s)$. Then $\mathcal{P}(G \cup G', s) = \mathcal{P}(G, s)$.

Results

For example, for the schedule $\{1\}$ $\{2\}$, there are three preimages:

Theorem

For this reason, if for a digraph P and a block-sequential schedule s there exists at least one preimage G, then there exists a maximum preimage.

\overline{P} Rule

 $\forall (u, v) \text{ such that } lab(u, v) = \oplus, \text{ if } (u, v) \notin P, \text{ then } (u, v) \notin G.$

\overline{P} Rule

 $\forall (u, v) \text{ such that } lab(u, v) = \oplus, \text{ if } (u, v) \notin P, \text{ then } (u, v) \notin G.$

Transitive Rule

 $\forall (u, v)$ such that $lab(u, v) = \ominus$, if $\exists w$ such that $(w, u) \in P$ and $(w, v) \notin P$, then $(u, v) \notin G$.

Transitive Rule

 $\forall (u, v)$ such that $lab(u, v) = \ominus$, if $\exists w$ such that $(w, u) \in P$ and $(w, v) \notin P$, then $(u, v) \notin G$.

Transitive Rule

 $\forall (u, v)$ such that $lab(u, v) = \ominus$, if $\exists w$ such that $(w, u) \in P$ and $(w, v) \notin P$, then $(u, v) \notin G$.

Algorithm MaxPI: Step 1 - Build and label

Input

Given a digraph P and a block-sequential schedule $s = \{3\} \{1\} \{2,4\}$.

Ρ

- 4 回 2 4 回 2 4 回 2 5 回 回

bel 📢

Input

Given a digraph P and a block-sequential schedule $s = \{3\} \{1\} \{2,4\}$.

Initially: $G \leftarrow K_n$, n = |V(P)|.

Algorithm MaxPI: Step 2a Removing green arcs

Rule

 $\forall (u, v) \in A(G)$ that does not satisfy the " \overline{P} rule", (u, v) is removed from G.

(*G*,*s*)

一日

Algorithm MaxPI: Step 2a Removing green arcs

Rule

 $\forall (u, v) \in A(G)$ that does not satisfy the " \overline{P} rule", (u, v) is removed from G.

(G, s)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Algorithm MaxPI: Step 2a Removing green arcs

Rule

 $\forall (u, v) \in A(G)$ that does not satisfy the " \overline{P} rule", (u, v) is removed from G.

(G, s)

Ρ

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Algorithm MaxPI: Step 2b Removing red arcs

Rule

 $\forall (u, v) \in A(G)$ that does not satisfy the "Transitive rule", (u, v) is removed from G.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Algorithm MaxPI: Step 2b Removing red arcs

Rule

 $\forall (u, v) \in A(G)$ that does not satisfy the "Transitive rule", (u, v) is removed from G.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Algorithm MaxPI: Step 2b Removing red arcs

Rule

 $\forall (u, v) \in A(G)$ that does not satisfy the "Transitive rule", (u, v) is removed from G.

Ρ

一日

4

3

IWBN 2020 16 / 31

Э

IWBN 2020 16 / 31

Э

<日></l>

Output

Since $\mathcal{P}(G,s) = P$, the algorithm return (G,s) as maximum preimage of P with the schedule s.

Another example of MaxPI: Step 1

Input

Given a digraph P and a block-sequential schedule $s = \{1\} \{2\}$.

Another example of MaxPI: Step 1

(日)

IWBN 2020

17 / 31

Input

Given a digraph P and a block-sequential schedule $s = \{1\} \{2\}$.

Initially:
$$G \leftarrow K_n$$
, $n = |V(P)|$.

Removing green arcs, according " \overline{P} rule".

IWBN 2020 18 / 31

Removing green arcs, according " \overline{P} rule".

Removing green arcs, according " \overline{P} rule".

Removing red arcs, according "Transitive rule".

Removing red arcs, according "Transitive rule".

Removing red arcs, according "Transitive rule".

Luis Cabrera-Crot et al. (U. Concepción) Inverse

Inverse block-sequential operator

IWBN 2020 20 / 31

IWBN 2020 20 / 31

Э

Luis Cabrera-Crot et al. (U. Concepción) Inverse block-sequential operator

r IWBN 2020

20 20 / 31

Algorithm for enumeration of preimages

Algorithm for enumeration of preimages

🚺 Algorithm for enumeration of preimages

J Algorithm for enumeration of preimages

· • 同 • • 三 • • 三 •

Э

Algorithm for enumeration of preimages

IWBN 2020 21 / 31

Э

🚺 Algorithm for enumeration of preimages

Lemma

Let s be a block-sequential schedule and G and G' two digraphs such that V(G) = V(G'). If $G \subseteq G'$, then $\mathcal{P}(G, s) \subseteq \mathcal{P}(G', s)$.

🚺 Algorithm for enumeration of preimages

Lemma

Let s be a block-sequential schedule and G and G' two digraphs such that V(G) = V(G'). If $G \subseteq G'$, then $\mathcal{P}(G, s) \subseteq \mathcal{P}(G', s)$.

(G, s)

🚺 Algorithm for enumeration of preimages

Lemma

Let s be a block-sequential schedule and G and G' two digraphs such that V(G) = V(G'). If $G \subseteq G'$, then $\mathcal{P}(G, s) \subseteq \mathcal{P}(G', s)$.

🚺 Algorithm for enumeration of preimages

Proposition

Let s be a block-sequential schedule and G and G'' two digraphs such that $G'' \subseteq G$. If $\mathcal{P}(G, s) = \mathcal{P}(G'', s)$, then $\forall G', G'' \subseteq G' \subseteq G, \mathcal{P}(G', s) = \mathcal{P}(G, s) = \mathcal{P}(G'', s)$.

Algorithm for enumeration of preimages

Proposition

Let s be a block-sequential schedule and G and G'' two digraphs such that $G'' \subseteq G$. If $\mathcal{P}(G, s) = \mathcal{P}(G'', s)$, then $\forall G', G'' \subseteq G' \subseteq G, \mathcal{P}(G', s) = \mathcal{P}(G, s) = \mathcal{P}(G'', s).$

Proof

Since $G'' \subseteq G' \subseteq G$, then $\mathcal{P}(G'', s) \subseteq \mathcal{P}(G', s) \subseteq \mathcal{P}(G, s)$. Since $\mathcal{P}(G'', s) = \mathcal{P}(G, s)$, then $\mathcal{P}(G'', s) = \mathcal{P}(G', s) = \mathcal{P}(G, s)$.

Algorithm for enumeration of preimages

Э

Algorithm for enumeration of preimages

Inverse block-sequential operator

IWBN 2020 24 / 31

Э

2

IWBN 2020 24 / 31

Algorithm for enumeration of preimages

Complexity

The complexity of this algorithm has a polynomial delay.

Algorithm for enumeration of preimages

Complexity

The complexity of this algorithm has a **polynomial delay**. Since there are cases with an exponential number of pre-images, listing all the pre-images has an **exponential cost**

Algorithm for enumeration of preimages

Complexity

The complexity of this algorithm has a **polynomial delay**. Since there are cases with an exponential number of pre-images, listing all the pre-images has an **exponential cost** For example, this digraph with the block-sequential schedule $\{2\}$ $\{3\}$ $\{4\}$ $\{1\}$ has 8 preimages, corresponding to $2^{\frac{(n-2)(n-1)}{2}}$.

1 Motivation

2 Algorithm

Problem

Given two digraphs G and P, does there exist a block-sequential schedule s such that $\mathcal{P}(G, s) = P$?

s =???

(日)

If G and P are acyclic digraphs, it is possible to decide if there is labeling function *lab* such that $\mathcal{P}(G, lab) = P$ in polynomial time.

If G and P are acyclic digraphs, it is possible to decide if there is labeling function *lab* such that $\mathcal{P}(G, lab) = P$ in polynomial time.

How?

With an algorithm that label the arcs of G, according the following rules:

If G and P are acyclic digraphs, it is possible to decide if there is labeling function *lab* such that $\mathcal{P}(G, lab) = P$ in polynomial time.

How?

With an algorithm that label the arcs of G, according the following rules:

• "Transitive rule": If $\exists u, v, w \in V(G)$, such that $(u, v) \in G$, $(w, u) \in P$ and $(w, v) \notin P$, then $lab(u, v) = \oplus$.

If G and P are acyclic digraphs, it is possible to decide if there is labeling function *lab* such that $\mathcal{P}(G, lab) = P$ in polynomial time.

How?

With an algorithm that label the arcs of G, according the following rules:

- "Transitive rule": If $\exists u, v, w \in V(G)$, such that $(u, v) \in G$, $(w, u) \in P$ and $(w, v) \notin P$, then $lab(u, v) = \oplus$.
- " \overline{P} rule": If $\exists u, v \in V(G)$, such that $(u, v) \in G$ and $(u, v) \notin P$, then $lab(u, v) = \ominus$.

If G and P are acyclic digraphs, it is possible to decide if there is labeling function *lab* such that $\mathcal{P}(G, lab) = P$ in polynomial time.

How?

With an algorithm that label the arcs of G, according the following rules:

- "Transitive rule": If $\exists u, v, w \in V(G)$, such that $(u, v) \in G$, $(w, u) \in P$ and $(w, v) \notin P$, then $lab(u, v) = \oplus$.
- " \overline{P} rule": If $\exists u, v \in V(G)$, such that $(u, v) \in G$ and $(u, v) \notin P$, then $lab(u, v) = \ominus$.
- If ∃u, v ∈ V(G), such that if (u, v) is labeled ⊖, then an arc that is not in P is formed, then lab(u, v) = ⊕.

If G and P are acyclic digraphs, it is possible to decide if there is labeling function *lab* such that $\mathcal{P}(G, lab) = P$ in polynomial time.

How?

With an algorithm that label the arcs of G, according the following rules:

- "Transitive rule": If $\exists u, v, w \in V(G)$, such that $(u, v) \in G, (w, u) \in P$ and $(w, v) \notin P$, then $lab(u, v) = \oplus$.
- " \overline{P} rule": If $\exists u, v \in V(G)$, such that $(u, v) \in G$ and $(u, v) \notin P$, then $lab(u, v) = \ominus$.
- If $\exists u, v \in V(G)$, such that if (u, v) is labeled \ominus , then an arc that is not in P is formed, then $lab(u, v) = \oplus$.
- If $\exists u, v \in V(G)$, such that if (u, v) is labeled \oplus , then an arc that is in P cannot be formed, then $lab(u, v) = \ominus$.

If G and P are acyclic digraphs, it is possible to decide if there is labeling function *lab* such that $\mathcal{P}(G, lab) = P$ in polynomial time.

How?

With an algorithm that label the arcs of G, according the following rules:

- "Transitive rule": If $\exists u, v, w \in V(G)$, such that $(u, v) \in G, (w, u) \in P$ and $(w, v) \notin P$, then $lab(u, v) = \oplus$.
- " \overline{P} rule": If $\exists u, v \in V(G)$, such that $(u, v) \in G$ and $(u, v) \notin P$, then $lab(u, v) = \ominus$.
- If $\exists u, v \in V(G)$, such that if (u, v) is labeled \ominus , then an arc that is not in P is formed, then $lab(u, v) = \oplus$.
- If $\exists u, v \in V(G)$, such that if (u, v) is labeled \oplus , then an arc that is in P cannot be formed, then $lab(u, v) = \ominus$.
- If $\exists u, v \in V(G)$, such that if (u, v) is labeled \ominus , then an arc that is in P cannot be formed, then $lab(u, v) = \oplus$.

28 / 31

If one arc is labeled \oplus and \ominus by different rules, then the decision problem answer is "There is no labeling function *lab* such that $\mathcal{P}(G, lab) = P$ "...

(1)

If one arc is labeled \oplus and \ominus by different rules, then the decision problem answer is "There is no labeling function *lab* such that $\mathcal{P}(G, lab) = P$ "...

Otherwise, the labeling function formed by all the arcs labeled by the algorithm plus negative arcs (replacing the arcs not labeled by the algorithm) is a labeling function such that $\mathcal{P}(G, lab) = P$.

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ● ● ● ●

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

E.

< □ > < □ > < □ > < □ > < □ > < □ >

E.

Work in progress...

• And for the acyclic case?

Luis Cabrera-Crot et al. (U. Concepción)

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

Work in progress...

• And for the acyclic case?

Still in progress

Luis Cabrera-Crot et al. (U. Concepción)

Inverse block-sequential operator

IWBN 2020 31 / 31

Work in progress...

• And for the acyclic case?

Still in progress

Thank You!

Luis Cabrera-Crot et al. (U. Concepción)

Inverse block-sequential operator

IWBN 2020 31 / 31

(日)