Boolean network classes

Maximilien Gadouleau

Including joint work with Florian Bridoux and Guillaume Theyssier

IWBN2020, Concepción, January 2020

The need for BN classes

Two classical families of BN classes

Outline

The need for BN classes

Two classical families of BN classes

A Boolean network (BN) is any

$$f: \{0,1\}^n \to \{0,1\}^n.$$

We see $f = (f_1, \ldots, f_n)$, where each $f_v : \{0, 1\}^n \to \{0, 1\}$ is a Boolean function.

Similarly, we see $x = (x_1, ..., x_n) \in \{0, 1\}^n$.

It's typical in maths to consider classes of objects with special properties.

Examples for graphs: trees, bipartite graphs, cographs, chordal graphs, perfect graphs, interval graphs, etc.

There are a lot of BNs! Here are the number of different objects on a set of n elements:

- (Simple) graphs: $2^{\binom{n}{2}}$
- **>** Digraphs, a.k.a. binary relations, a.k.a. Boolean matrices: 2^{n^2}
- ▶ Hypergraphs, a.k.a. set families, a.k.a. Boolean functions: 2^{2^n}
- Boolean networks: $(2^{2^n})^n = 2^{n2^n}$.

Therefore, we need to look at Boolean network classes.

Outline

The need for BN classes

Two classical families of BN classes

The interaction graph of f, denoted $\mathbb{D}(f)$, has vertex set [n] and uv is an arc in $\mathbb{D}(f)$ if and only if f_v depends essentially on x_u , i.e.

 $\exists a, b \in \{0,1\}^n$ such that $a_{-u} = b_{-u}, f_v(a) \neq f_v(b)$.

Seminal result: Robert's theorem. (Robert 80) If $\mathbb{D}(f)$ is acyclic, then f has a unique, globally attractive fixed point $(f^n(x) = c \text{ for all } x)$.

BN classes: interaction graph

Extensions of Robert's theorem.

- Signed version: no positive cycles, no negative cycles (Aracena 04; Richard 10)
- Quantitative version: (Positive) feedback bound (Aracena 08; Riis 07) and many results after that
- Complexity results in the signed case (Bridoux, Dubec, Perrot, Richard 19)
- Dynamic characterisation of BNs with acyclic interaction graphs (G 20+)

BN classes: interaction graph

Other results for the following interaction graphs:

Cycles (Remy, Mossé, Chaouiya, Thieffry 03;

BN classes: local functions

There is a natural partial order on $\{0,1\}^n$: $x \leq y$ if $x_i \leq y_i$ for all $1 \leq i \leq n$.

f is monotone if $x \leq y \implies f(x) \leq f(y)$. Equivalently, f is monotone if $x \leq y \implies f_i(x) \leq f_i(y)$ for all $1 \leq i \leq n$.

Seminal result: Knaster-Tarski theorem. (Knaster 28; Tarski 55) If f is monotone, then Fix(f) is a lattice (and hence, is not empty).

Related results:

- Bounds on the number of fixed points in (Aracena, Richard, Salinas 17)
- Fixed points asynchronously reachable by a geodesic (Richard 10; Melliti, Regnault, Richard, Sené 13)
- Monotone networks are fixable in cubic time (Aracena, G, Richard, Salinas, 20+)

BN classes: local functions

Further results for other classes based on local functions:

Monotone conjunctive networks (AND-networks)

$$f_i(x) = igwedge_{j \in N(i)} x_j$$

are fixable in linear time

Number of fixed points of conjunctive networks

$$f_i(x) = igwedge_{j \in N^+(i)} x_j \wedge igwedge_{k \in N^-(i)} ar{x_k}$$

(Aracena, Demongeot, Goles 04; Aracena, Richard, Salinas 14)

- Goles's theorem on symmetric threshold networks (Goles 80 and many extensions): period at most 2 on parallel, only fixed points in sequential
- Linear networks: see linear algebra
- Majority function, freezing networks: ask Eric

Outline

The need for BN classes

Two classical families of BN classes

BN classes: metric properties

There is a natural metric on $\{0,1\}^n$, namely the Hamming metric

Seminal result. (Polya 40)

The following are equivalent:

- 1. f is an isometry (i.e. $d_{\mathrm{H}}(f(x), f(y)) = d_{\mathrm{H}}(x, y)$)
- 2. f is an automorphism of the hypercube (i.e. f is bijective and $d_{\rm H}(x, y) = 1$ implies $d_{\rm H}(f(x), f(y)) = 1$)
- 3. f is a union of cycles.

Extension to non-expansive networks, where $d_{\rm H}(f(x), f(y)) \leq d_{\rm H}(x, y)$ (i.e. it is 1-Lipschitz) (Feder 92):

- Characterisation of sets of fixed points of non-expansive networks
- Dynamics are ultimately those of an isometry

BN classes: asynchronous properties

Let $b \subseteq [n]$, then $f^{(b)}(x) = (f_b(x), x_{[n] \setminus b}).$ For any word $w = (w_1, \dots, w_t)$ with $w_i \subseteq [n]$, we denote $f^w = f^{(w_t)} \circ \dots \circ f^{(w_1)}.$

A word $B = (b_1, \ldots, b_t)$ is block-sequential if $b_i \cap b_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^t b_i = [n]$.

Proposition. (Bridoux, G, Theyssier, "Commutative automata networks") The following are equivalent.

1. f is commutative, i.e.
$$f^{(i,j)} = f^{(j,i)}$$
 for all $i, j \in [n]$

2.
$$f^{(b,c)} = f^{(c,b)}$$
 for all $b, c \subseteq [n]$

- 3. $f^B = f^C$ for any two block-sequential words B, C of [n]
- 4. $f = f^B$ for any block-sequential word B of [n].

In other words, commutative networks are robust to changes in the update schedule.

Theorem. (Bridoux, G, Theyssier, "Commutative automata networks") A Boolean network is commutative if and only if it is a union of arrangement networks.

BN classes: asynchronous properties

We define arrangements as follows.

A subcube of $\{0, 1\}^n$ is any set of the form $X[s, \alpha] := \{x \in \{0, 1\}^n, x_s = \alpha\}$ for some $s \subseteq Z$ and $\alpha \in \{0, 1\}^s$. A family of subcubes $X = \{X_\omega : \omega \in \Omega\}$ is called an arrangement if $X_\omega \cap X_\xi \neq \emptyset$ for all $\omega, \xi \in \Omega$ and $X_\omega \not\subseteq X_\xi$ for all $\omega \neq \xi$. We denote the content of X by $\hat{X} := \bigcup_{\omega \in \Omega} X_\omega$.

If $X = \{X_{\omega} = X[s^{\omega}, \alpha^{\omega}] : \omega \in \Omega\}$ is an arrangement, then the dimensions of \hat{X} are as follows.

- ▶ Let $\tau := \bigcap_{\omega \in \Omega} s^{\omega}$, then τ is the set of external dimensions of \hat{X} .
- ▶ Let $\sigma := \bigcup_{\omega \in \Omega} s^{\omega}$, then $[n] \setminus \sigma$ is the set of free dimensions of \hat{X} . Then $\bigcap_{\omega \in \Omega} X_{\omega} = X[\sigma, \alpha]$.
- The other dimensions in $\sigma \setminus \tau$ are the tight dimensions of \hat{X} .

Arrangement network: Let X be an arrangement. Then on \hat{X} , let

- 1. $f_i(x) = \alpha_i$ for every tight dimension i of \hat{X} ,
- 2. f_j be uniform nontrivial for any free dimension j,

3. and f_k be trivial on any external dimension of \hat{X} . Outside of \hat{X} , f is trivial: f(x) = x if $x \notin \hat{X}$.

Any arrangement network is commutative.

BN classes: asynchronous properties

We can combine families of commutative networks as follows.

x is an unreachable fixed point of f if

$$f^{(s)}(y)=x\iff y=x\qquad orall s\subseteq [n],s
eq \emptyset.$$

Let R(f) be the set of non-(unreachable fixed points) of f. If $\{f^a : a \in A\}$ is a family of networks with $R(f^a) \cap R(f^{a'}) = \emptyset$ for all $a, a' \in A$, we define their union as

$$F(x):=igcup_{a\in A}f^a(x)=egin{cases} f^a(x) & ext{if } x\in R(f^a)\ x & ext{otherwise.} \end{cases}$$

Any union of arrangement networks is commutative.

Some other ways of defining BN classes:

- Recursively
- Substructure definition of BN: subnetwork, reduction, Boolean derivative...
- Finite field form: f is a polynomial over $GF(2^n)$ $(f(x) = \alpha x$ used in (Bridoux, G, Theyssier 20+))
- Using clones for families of local functions (see Post's lattice)

Merci !

¡Muchas gracias!

Thank you!