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4) Sand Piles: universality and lattice structure.
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We consider a 4x4 
lattice with periodic 
conditions,
nearest 
interactions, states 
0 or 1, and the local 
majority function:
If the number of 
ones is bigger or 
equal to the number 
of zeros then
the site takes the 
value 1.

NEURAL AND THRESHOLD NETWORKS



Neural networks

No se puede mostrar la imagen.

The weight matrix

The threshold vector

iff
0        otherwise



For arbitrary matrices W previous model may accept,
iterated in parallel or block-sequentially, long period cycles 
and long  transients … But when W is symmetric the 
network admits short periods and an energy: (E.G and J.Olivos, 

Discrete Mathematics, 1980,Discrete Applied Maths, 1981; E.G, SIAM J of Computing, 1982; E:G, F. 
Fogelman, Discrete Applied Maths(1985))

Further, if  diag (W) ≥ 0, any sequential update
admits the energy (E.G., F. Fogelman, G. Weisbuch, Disc. Applied 

Maths.  1982)



For arbitrary matrices W previous model may accept, 
Iterated in parallel or sequenDally, long period cycles 
and transients …..
But when W is symmetric the network converges to
fixed point or two periodic cycles (parallel update), 

And, if diag(W)≥0 to fixed point (sequenDal update).

E.G, J. Olivos, Periodic behaviour of generalized threshold funcDons, 
Discrete mathemaDcs, vol 30, pp 187-189, 1980
E.G., Fixed Point behavior of threshold funcDons on a finite set, SIAM Journal on 
Alg.  And Discrete Methods, vol 3(4), pp 2554-2558, 1982.



The most general dynamical result:
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s = {I1,...,Ip}
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W (Ik )
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k ∈{1,..., p}

Consider the block-sequenDal scheme

The symmetrical threshold network    T=(W, b, s)

Let the sub-matrix associated to the k-th block

If for every is non-negaDve-definite

€ 

W (Ik )

The network converges to fixed points

E. G., F. Fogelman-Soulie, D. Pellegrin, Decreasing energy funcDons as a tool

For studying threshold networks, Discrete Applied MathemaDcs, vol 12, pp261-277, 1985.



We will suppose now that every matrix is the incidence matrix of  
an undirected graph G=(V,E), so their entries belong to the set {0,1} 
W=W(G)=                 eventually with loops 

€ 

(wij )

€ 

(wii =1)

€ 

α(G) = −n − k + 2m − 4 p
n = |V|, 
m =|E|,  (without loops)
K  = the number of loops,
P  = the minimum number of edges to remove 

such that the sub-graph is biparDte.
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Theorem: airactors for every block-sequenDal update.
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s = {I1,...,Ip}
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k ∈{1,..., p}

Consider the block-sequenDal scheme

The symmetrical threshold network    T=(W, b, s)

Let the graph associated to the k-th block

fixed points
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GeneDc and regulatory networks
Neutral space and applicaDons
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Fission yeast
cell-cycle model 

(Yeast1)
Model proposed in Davidich, 
Bornholdt (2008) PlosONE)





The total number of updates is 545835

The equivalence classes are 15350

For                   and Ste9(t)=Rum(t)=0  there are
3984 equivalence classes with a limit cycle (unique). 

For                there are 868 classes with a limit cycle (unique) 
Such that Ste9=0 and 661 classes with Ste9 non constant.

So there exists  5513 classes with a cycle
(period between 2 and 5)





Cell cycle of the budding 
yeast

Li, Long, Lu, Tang,(2004) The yeast cell-cycle
network is robustly designed,  PNAS,101,

4781-4786

THEOREM: for any update YEAST2 has only fixed points



ANTS as Complex systems: could be intelligence 
an emergent property?

A. Gajardo, E.G., A Moreira, Complexity of Langton’s Ant, Discrete Applied MathemaDcs. Vol. 117, Issue 1-3, pp. 41-
50, (with A. Gajardo, A. Moreira). (2002)
A. Gajardo, E.G, E. Moreira, Generalized Langton’s Ant: Dynamical Behavior and Complexity, STACS’2001 Lectures 
Notes in Comp. Sci. 2010, pp.259-70. (2001)
A.Gajardo, E.G, A. Moreira, Dynamical Behavior and Complexity of Langton’s Ant,  in Complexity, Vol.6 , N°4, pp 46-
51  (2001)
A. Gajardo, E.G., Dynamics of a class of ants in a one dimensional layce  in Theorical Computer Science, vol. 322, 
number 2, pp. 267-283 (2004).
M. Schimick, E.G, M. Markus, Tracks Emerging by Forcing Langton´s Ant with binary sequences, in Complexity 11,27-
32 (2006).



Planar ant model (Langton’s ant)



Ant’s dynamics

THEOREM: The ant is  P-Complete and Turing Universal

Logic gate



Freezing ant. 
Theorem: bounded behavior 

Work in progress
EG, P. Montealegre, M. Ríos Wilson (Phd student) ,  D. Maldonado (post-Doc), 

P.Concha (Bío-Bío, DISC), R. Torres (Bío-Bío)
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Sand Piles and Chip firing games
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Universality of the chip-firing game 
Eric Gales a, *, Maurice Margenstern b 
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Abstract 

We prove that the parallel updating of the chip-firing game on undirected graphs is univer- 
sal. To achieve that, we simulate any given two-register machine by chip configurations. As 
corollaries, we prove that for finite graphs there exists exponential transient time to reach peri- 
odic configurations as well as exponential cycles. Also, we prove, for infinite graphs, that the 
reachability problem is undecidable. 

1. Introduction 

Let G = (V, E) denote an undirected graph, each vertex being finitely many con- 
nected, but G being possibly infinite. A distribution of chips is set on the set of vertices 
of G, say x; chips, xi 3 0, in vertex i. The local rule of the game is the following: if 
the number of chips, Xi, is not less than the degree di of vertex i, the vertex gives one 
chip to each of its neighbors. T’he game can be played asynchronously, (i.e. vertices 
with enough chips are updated one by one) or in parallel. The last iteration mode can 
be defined as follows: 

xi(t + 1) = xi(t) - dil(xi(t) - di) + C I (~i (t ) - dj), 
jGV, 

where x(O) E NIV1 is the initial distribution of chips and l(u) = 1 iff u 2 0, 0 otherwise. 
Fig. 1 gives an example of the parallel dynamics of a finite graph: 
It is important to point out that, for finite graphs, the parallel iteration on a con- 

figuration x(t), can be simulated by the sequential update of the 1 V 1 vertices one by 
one in order 1,2 ,..., [VI. It is clear that after updating every vertex which has enough 
chips, configuration x(t + 1) reached by parallel updating x(l) is also obtained. 

* Corresponding author. E-mail: egoles@dim.uchile.cl. 

0304-3975/97/$17.00 @ 1997 -Elsevier Science B.V. All rights reserved 
PII SO304-3975(95)00242-l 
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Fig. 1. Cycle of period four of the chip-firing game. 

The chip-firing game has independently been introduced in discrete mathematics and 
statistical physics and is related to many problems. In discrete mathematics it was 
introduced by Spencer [ 171 to analyze a balancing game. In physics it was introduced 
by Bak et al. [2] in order to model sand pile avalanches in the framework of the self 
organized criticallity paradigm. Next is a brief survey of the main results and studies 
about this model. 

Anderson et al. [l] studied the number of steps in function of the initial number 
of chips placed in one site of Z, which the game needs to converge to a quiescent 
configuration (i.e. each site has at most one chip). Later those studies were extended 
to general graphs by Bjiimer et al. [5]. Tardos [18] showed that if the chip-firing game 
over an undirected graph terminates, then it terminates in a polynomial number of 
steps, depending on the number of vertices. Eriksson [6] showed that when the graph 
is directed, then terminating the game can be exponentially long. 

From the physical point of view, the chip-firing game can be seen as a sand- 
pile model, as it is pointed out in [9, lo]. The sand-pile model consists of a lo- 
cal rule to produce avalanches in a one-dimensional non-increasing configuration of 
sand-grains [2]. When a local slope is greater than a critical threshold, a grain of 
sand tumbles to the next right pile. In [ 10, 1 l] the equivalence has been studied be- 
tween this model and the one-dimensional chip-firing game proposed in [l]. Further- 
more, the sand-pile point of view allows to give exact expressions, depending on the 
number of initial chips, on the number of steps needed to reach a quiescent confi- 
guration [ 111. 

Most previous models are related with the asynchronous update; i.e. one fires vertices 
one by one in an arbitrary order. The parallel chip firing game has been studied in [3], 
where an invariant property is shown about the activity of vertices (i.e. the temporal 
pattern of firing and no firing situations). From this property, it was also proved that 
the parallel chip firing game converges towards periods of length at most 2 when the 
graph is a finite tree. 

Prisner [ 151 studied properties of the parallel chip-firing game on directed graphs and 
he proved that for every strongly connected eulerian multidigraph there is a parallel 
chip-firing game that evolves into steady states with period equal to the length of the 
longest dicycle in the underlying graph. It was also conjectured that this was the longest 
possible period reached by the parallel chip-firing game on such digraphs. Later, this 
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Chip firing game is P-complete, and Turing Universal 

Recently we have established a relaDonship related with the complexity of
C the chip firing and majority funcDons in a two dimensional grid
with the von Neumann M neighborhood. (Work in progress, preprint,
E.G., P. Montealegre, K,  Perrot (2019)



We will consider decision problems (YES or NO answer).
The class P: problems which we can be decided in a serial 
computer in polynomial time.

The class NC: problems which can be decided in a parallel 
machine (say a PRAM) in poly-logarithmic time by using a 
polynomial number of processors.

.

Dynamics of automata networks 
and computaDonal complexity
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Given a finite non 
oriented graph 
G=(V,E) and an 
iniDal 
configuraDon of 0’s 
and 1’s.Consider 
the strict majority 
funcDon operaDng 
at each node.

What is the 
relaDonship 
between the graph 
and the
proporDon of 1’s 
such that  iterated 
in parallel every 
node  will become 
1?

Bootstrap Percolation



Decision problem PRE: given an initial 
configuration and a specific node at value 0. 
does there exist T>0 such that this 
node becomes 1?

Theorem (E.G, P. Montealegre)

For graphs such that its maximun degree ≥ 5, 
PRE is P-complete.
If the maximun degree ≤ 4, PRE belongs to NC



We consider the similar decision problem PRE

Von Neumann neighborhood 
in 2D

Nearest neighborhood
In 3D

OPEN P-Complete

THEOREM: For planar graphs PRE for the majority 
vote is P-Complete

E.G,  P. Montealegre.

COMPLEXITY for the majority

conjecture (C. Moore): easy (C. Moore)



wire Duplicate a signal
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Signed two dimesional Majority with the
Von Neumann neighborhood.

E.G., P. Montealegre, K. Perrot, G. Theyssier, On. The complexity of two diomensional
Signed majority cellular automata, Journal of Computer and X System Sciences, Vol 91
Pp 1-32, 2018
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3 Non-equivalent rules

I Symmetric

+

+

+

+
+

I Antisymmetric

+

-

-

+
+

I Asymmetric

+

-

+

+
+



Symmetric majority

AnDsymmetric majority

Asymmetric majority

Several 
steps

IniDal 
condiDon airactor

Periodic configuraDon
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Prediction problem

Prediction
Input:

I a finite configuration of size n (periodic boundary conditions),

I T > 0 and,

I a site v .

Task: Compute the state of v after T steps.

Theorem [Goles, 1980]:

The majority automaton reaches, on every initial configuration, a

fixed point or a cycle of length 2 in at most O(n2) steps.

Conjecture [C. Moore 1997]:

Prediction is easy for the majority automaton in 2D.



10/12

3 Non-equivalent rules

I Symmetric

I Cycles of length 2,

I Antisymmetric

I Cycles of length ⌦(n)

I Asymmetric

I Cycles of length 2
⌦(n1/3)

12/12

Discussion

I Symmetric

I Cycles of length 2,

I Prediction is polynomial,

I Prediction is NC 1
-Hard.

I Antisymmetric

I Cycles of length ⌦(n)

I Asymmetric

I Cycles of length 2
⌦(

p
n log n)

I Prediction is P-Hard.
I (Prediction is in PSPACE ).



Social Science Modelling: Schelling Segregation, 
Sakoda’s model and polarization
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The Model of  SegregaDon by Shelling

Layce one or two dimensional with 
periodic condiDons

State
Neighborhood  Moore 
(green and red arrows) 
and von Neumann (red 
arrows)

Tolerance threshold

Thomas C. Schelling (1969 - 1972)



Happiness threshold
An individual is unhappy if there are
more than individuals on the other
state in its neighborhood

The update rule
At each step, one lists the unhappy
individuals of both species, and then
randomly (for instance) one
exchanges two individuals of opposite
value.



Phase diagram
for Moore’s neighborhood

Other neighborhoods



PolarizaDon.

Recent empirical findings suggest that socieDes have become more polarized in various 
countries, i.e. the median voter of today represents a smaller fracDon of society compared to 
two decades ago. What is driving this polarizaDon? AcDvist-voter interacDons play a major role 
in poliDcal opinion formaDon. We study a macroscopic opinion model in which acDvists target 
certain groups of individuals in order to inject their poliDcal ideas. PolarizaDon emerges when 
small heterogeneiDes among compeDng acDvists cause them to target different groups in 
society 

Lucas B öicher, Hans Gersbach,  (ETH)  E.G.  P. Montealegre.UAI  

PolarizaDon model. In this example, the poliDcal spectrum consists of N = 9 
different states and is divided in three groups: group A, a neutral set of agents, 
and group B. A transiDon from one state to its nearest neighbors occurs with 
probability p. A poliDcal acDvist A+ or B+ can locally decrease the transiDon 
probabiliDes (p− < p) or increase them (p+ > p). 









See you soon !!


