Boolean Networks And Their Dynamics

IWBN2020

Concepción, Chile January 6, 2020

Reinhard Laubenbacher Center for Quantitative Medicine UConn School of Medicine Jackson Laboratory for Genomic Medicine

reinhard.laubenbacher@gmail.com

Leading the search for tomorrow's cures

Ehe New York Eimes

DEADLY GERMS, LOST CURES

A Mysterious Infection, Spanning the Globe in a Climate of Secrecy

The rise of Candida auris embodies a serious and growing public health threat: drug-resistant germs.

By Matt Richtel and Andrew Jacobs

April 6, 2019

Nutritional immunity and fungal infections

S.J. Park et al., J. Immunol., 2006

Y.-S. Sun et al., Biomicrofluidics, 2012

Aspergillus fumigatus

Brandon *et al., BMC Sys. Biol.2015*

Fe³⁺ / Iron-pool ----- TAFCBI TAFC Iron Regulation sreA SreA l Siderophore SidA TAFC Biosynthesis hapX HapX FC-Fe Iron Storage MirB CccA IP Oxidative Stress Response EstB Yap1 Cat1/2 VAC FC+Fe Iron Uptake ROS ICP RIA Thioredoxin SOD2/3 Tr. Iron Usage pathway . 0₂-A. fumigatus Acute phase IL1, IL6, reaction TNFa Dectin1/TLR Production Recruitment of CCL2, IL8 Phagosome of monocytes Syc/src/nfkb cytokines NADPH Oxidase ROS signaling Phox,rac,rho fungal killing Recruitment CXCR2 ligands of neutrophils IL8, IL-1a expression of Extra-Ferritin **Cell Membrane** adhesion TNF molecules on endothelial cells oxidative stress HAMP FPN Labile Iron Pool (LIP) BDH2 IRP TFRC TF Mt-LIP ZIP Intra HO1 heme DMT1 NTBI

CD91

Extra heme

Hemopexin

CD163

Haptoglobin

Hemoglobin

Macrophage (preliminary)

The Team:

UConn SOM: B. Adhikari, A. Conan, H. DeAssis, L. Flores, J. Masison, E. Mei, L. Poudel
Jackson Laboratory: L. Sordo Vieira
U Florida SOM: B. Mehrad, N. Yang, Y. Scindia
Kitware Inc.: W. Schroeder, M. Grauer, B. Helba, S. Arikatla, J. Beezley

Boolean Networks

Computation

Veliz-Cuba et al. BMIC Bioinformatics 2014, 15:221 http://www.biomedicentral.com/1471-2105/15/221

METHODOLOGY ARTICLE

Open Access

Steady state analysis of Boolean molecular network models via model reduction and computational algebra

Alan Veliz-Cuba^{1,2*}, Boris Aguilar³, Franziska Hinkelmann⁴ and Reinhard Laubenbacher⁵

Mendoza, Xenarios, Theor. Biol. And Med., 2006

- "Dynamic equivalence" of networks
- AND-NOT networks
- Transformation to a graph-theoretic problem
- Transformation into polynomial systems

Theory

Communications in Algebra[®], 33: 2977–2989, 2005 Copyright © Taylor & Francis, Inc. ISSN: 0092-7872 print/1532-4125 online DOI: 10.1081/AGB-200066211

LINEAR FINITE DYNAMICAL SYSTEMS[#]

René A. Hernández Toledo

Mathematics Department, University of Puerto Rico at Cayey, Cayey, Puerto Rico Commun. Math. Phys. 93, 219-258 (1984)

© Springer-Verlag 1984

Algebraic Properties of Cellular Automata

Olivier Martin^{1,*}, Andrew M. Odlyzko², and Stephen Wolfram^{2,3,**}

- 1 California Institute of Technology, Pasadena, CA91125, USA
- 2 Bell Laboratories, Murray Hill, NJ 07974, USA
- 3 The Institute for Advanced Study, Princeton, NJ 08540, USA

Bulletin of Mathematical Biology (2010) DOI 10.1007/s11538-010-9501-z

ORIGINAL ARTICLE

The Dynamics of Conjunctive and Disjunctive Boolean Network Models

Abdul Salam Jarrah^{a,b,*}, Reinhard Laubenbacher^a, Alan Veliz-Cuba^a

^a Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061-0477, USA
 ^b Present address: Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

The number of periodic points

Theorem 3 Let f be a conjunctive Boolean network whose dependency graph is strongly connected and has loop number c. If c = 1, then f has the two fixed points (0, 0, ..., 0) and (1, 1, ..., 1) and no other limit cycles of any length. If c > 1 and m is a divisor of c, then the number of periodic states of period m is

$$|A(m)| = \sum_{i_1=0}^{1} \cdots \sum_{i_r=0}^{1} (-1)^{i_1+i_2+\dots+i_r} 2^{p_1^{k_1-i_1} p_2^{k_2-i_2} \dots p_r^{k_r-i_r}},$$

where $m = \prod_{i=1}^{r} p_i^{k_i}$ is the prime factorization of m, that is p_1, \ldots, p_r are distinct primes and $k_i \ge 1$ for all i.

Theorem 6.2. Consider the function

$$\mathcal{L}(z_1,\ldots,z_t) := \sum_{\mathcal{J}\subseteq\Omega} (-1)^{|\mathcal{J}|+1} \prod_{j\in\bigcap_{J\in\mathcal{J}}J} z_i.$$

Then for any conjunctive Boolean network f with subnetworks h_1, \ldots, h_t and Ω its set of maximal antichains in the poset of f, we have

$$\mathcal{L}\big(\mathcal{C}(h_1),\ldots,\mathcal{C}(h_t)\big) \le \mathcal{C}(f).$$
(9)

Here, the function \mathcal{L} is evaluated using the "multiplication" described in Corollary 3.5. This inequality provides a sharp lower bound on the number of limit cycles of f of a given length.

There is no sharp upper bound in the form of a polynomial function in terms of the cycle structure of the strongly connected components and the structure of the partially ordered set of components.

Automatica 99 (2019) 167-174

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Dynamics of semilattice networks with strongly connected dependency graph*

Alan Veliz-Cuba^{a,*}, Reinhard Laubenbacher^{b,c}

^a University of Dayton, Dayton, OH, USA

^b Center for Quantitative Medicine, University of Connecticut Health Center, USA

^c Jackson Laboratory for Genomic Medicine, USA

A "Hölder Program" for BNs

- Identify a class of BNs that are "simple" and sufficiently "rich."
- Define a notion of "quotient" of a BN by a subnetwork.
- Show that each BN has a filtration by subnetworks so that each successive quotient is a product of simple networks.
- Classify the different ways in which BNs can be built as extensions of two BNs that are simpler.
- Rigorous definition of "dynamic equivalence" of BNs.
- Develop a category-theoretic foundation for this program.

Journal of Theoretical Biology

Journal of Theoretical Biology

Volume 22, Issue 3, March 1969, Pages 437-467

Metabolic stability and epigenesis in randomly constructed genetic nets

S.A. Kauffman^{a, b}

C. Waddington, The Strategy of the Genes, 1957

Physica D 314 (2016) 1-8

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Stratification and enumeration of Boolean functions by canalizing depth

Qijun He, Matthew Macauley*

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, USA

Available online at www.sciencedirect.com

Physica D 233 (2007) 167-174

PHYSICA D

www.elsevier.com/locate/physd

Nested canalyzing, unate cascade, and polynomial functions[☆]

Abdul Salam Jarrah^{a,*}, Blessilda Raposa^b, Reinhard Laubenbacher^a

^a Virginia Bioinformatics Institute (0477), Virginia Tech, Blacksburg, VA 24061, USA ^b Mathematics Department, De La Salle University, 2401 Taft Avenue, Manila, Philippines

Prevalence of canalization

Nested canalizing functions (and therefore? canalizing functions) are overrepresented in GRNs.

Advances in Applied Mathematics 30 (2003) 655-678

ADVANCES IN Applied Mathematics

www.elsevier.com/locate/yaama

Decomposition and simulation of sequential dynamical systems

Reinhard Laubenbacher^{a,*} and Bodo Pareigis^b

^a Virginia Bioinformatics Institute, Blacksburg, VA 24061, USA
 ^b Mathematisches Institut, Universität München, Theresienstr. 39, D-80333 München, Germany

Proposal

Carry out the Hölder Program for synchronous AND-NOT networks.

Research supported by:

NIH 1R011AI135128-01 NIH 1U01EB024501-01 NIH 1R21AI101619-01 NSF CBET-1750183 NSF DMS 1460967 NSF CMMI-0908201 U.S. Dept. Defense W911NF-14-1-0486