Combinatorics and dynamical classification of an Ising cellular automaton: the Q2R model

Marco Montalva Medel Universidad Adolfo Ibáñez

[Joint work with Sergio Rica (UAI) and Felipe Urbina (U. Mayor)]

International Workshop on Boolean Networks (IWBN 2020) UDEC, January 10, 2020

- The Q2R model definition and its main properties.
- Preliminary results.
- Partition of the set of configurations in the Q2R dynamic.
- Classification of limit cycles in Q2R.
- Combinatorial and dynamical results on the Q2R.
- General overview of the Q2R dynamics.
- Exhaustive study of the (4×4) case.
- Discussion.

The Q2R² model

- Introduced by Vichniac¹ in the mid-80's, it is a cellular automata representation of the two-dimensional Ising model for ferromagnetism that possesses quite a rich and complex dynamics.
- It has the property of being reversible, i.e., any configuration in its dynamics belongs to an attractor (fixed point or limit cycle).
- It has the property of being conservative; there are different energy functions which are invariants under the Q2R dynamics.
- It is defined in a regular two dimensional toroidal lattice with even rank $L \times L$, being $N = L^2$ the total number of *nodes*.

¹G. Vichniac, *Simulating Physics with Cellular Automata*. Physica **D 10** (1984), 96–116.

²"Q" by *quatre* (four, in french) and represents the number of neighbors, "2" by the *two-step* dynamic, and "R" by the fact of being *reversible*.

International Workshop on Boolean Networks (IWBN 2020) Universidad de Concepción, January 10, 2020 / slide 3

The Q2R model

- The nodes have associated an index $\mathbf{k} \in \{1, ..., N\}$, as well as a relative position in the lattice specified by two indices $k_1 \in \{1, ..., L\}$ and $k_2 \in \{1, ..., L\}$ (the respective row and column indices).
- A node k is characterized by two possible values x_k = ±1, conforming with the following two-step rule:

$$x_{k}^{t+1} = x_{k}^{t-1} H\left(\sum_{i \in V_{k}} x_{i}^{t}\right)$$

where:

- V_k denotes the von Neumann neighborhood of its four closest neighbors, with periodic boundary conditions.
- The function H is such a that H(s = 0) = -1 and H(s) = +1 in all other cases.
- It requires two initial conditions, x^0 and x^1 , in order to start its dynamic and to obtain in the next *time step transition* x^2 , and so forth.

The Q2R model

- The state x^t belongs to the discrete set Ω ≡ {−1,1}^N (of size 2^N).
- The set of configurations, denoted by Ω², it is composed by couples of states in Ω² = Ω × Ω = {(x, y) | x ∈ Ω ∧ y ∈ Ω} (of size 2^{2N}).
- We rewrite the above two-step rule as the following one-step rule:

$$y^{t+1} = x^{t}$$
$$x^{t+1} = y^{t} \odot \phi(x^{t})$$

where:

- The symbol \odot denotes the Hadamard product (multiplication component to component for two matrices).
- $\phi: \Omega \to \Omega$ is the function such that, $[\phi(x)]_{k} = -1 \Leftrightarrow \sum_{i \in V_{k}} x_{i} = 0$, i.e., if the sum of all von Neumann neighbors of the *k*-th node is null. Otherwise, $[\phi(x)]_{k} = +1$.

Example of a $\phi(x)$ calculation

Remark

The state x does not have any null-neighborhood iff $\phi(x) = 1$. Notice that $\phi(1) = \phi(-1) = 1$, where $1, -1 \in \Omega$ are the states composed only by 1s and -1s, respectively.

Next, we show an example of some time step transitions in the Q2R dynamic by using the one-step rule.

Notation

$$(x^0, y^0) \to (x^1, y^1) \to (x^2, y^2) \to (x^0, y^0)$$
, or simply:
 $(x, y) \to (z, x) \to (y, z) \to (x, y)$

International Workshop on Boolean Networks (IWBN 2020)

Universidad de Concepción, January 10, 2020 / slide 7

Partitioning Ω^2

Firstly, we consider $\Omega^2 = \Omega_{xx}^2 \cup \Omega_{xy}^2$ where: $\Omega_{xx}^2 = \{(x, y) \in \Omega^2 \mid x = y\} \quad (\Rightarrow |\Omega_{xx}^2| = 2^N)$ $\Omega_{xy}^2 = \Omega^2 - \Omega_{xx}^2 = \{(x, y) \in \Omega^2 \mid x \neq y\} \quad (\Rightarrow |\Omega_{xy}^2| = 2^N(2^N - 1))$

Remark

$$|\Omega_{xx}^2| << |\Omega_{xy}^2|.$$

Secondly, we consider $\Omega_{xx}^2 = A \cup C$ and $\Omega_{xy}^2 = B \cup D$ where:

$$\begin{split} & A = \left\{ (x, y) \in \Omega_{xx}^2 \mid \phi(x) = \mathbb{1} \right\} \\ & B = \left\{ (x, y) \in \Omega_{xy}^2 \mid \phi(x) = \mathbb{1} \right\} \\ & C = \left\{ (x, y) \in \Omega_{xx}^2 \mid \phi(x) \neq \mathbb{1} \right\} \\ & D = \left\{ (x, y) \in \Omega_{xy}^2 \mid \phi(x) \neq \mathbb{1} \right\} \end{split}$$

Definition

We say that $(x, y) \in \Omega^2$ is a configuration of type A, B, C or D, if (x, y) belongs to one of the sets A, B, C or D, respectively.

International Workshop on Boolean Networks (IWBN 2020)

Definition

We say that, the symmetric configuration of $(x, y) \in \Omega^2$ is the configuration $(y, x) \in \Omega^2$. In particular, the symmetric configuration of $(x, x) \in \Omega^2$ is itself, *i.e.* (x, x), and we will call it self-symmetric configuration.

Definition

A limit cycle C is:

- (a) Symmetric if $\forall (x, y) \in C$, $(y, x) \in C$.
- (b) Non-symmetric if $\exists (x, y) \in C, (y, x) \notin C$.
- (c) Asymmetric if $\forall (x, y) \in C$, $(y, x) \notin C$.

Remark

 $\mathcal C$ asymmetric $\Rightarrow \mathcal C$ non-symmetric. The converse is not necessarily true.

Definition

 $P_T \subset \Omega^2$ is the set of configurations belonging to a limit cycle of length $T \in \mathbb{N}$.

International Workshop on Boolean Networks (IWBN 2020) Universidad de Concepción, January 10, 2020 / slide 9

Example: symmetric limit cycle of length 3

Example: non-symmetric limit cycle of length 3

Remark

Notice that, in fact, this limit cycle is asymmetric.

International Workshop on Boolean Networks (IWBN 2020)

Universidad de Concepción, January 10, 2020 / slide 11

Lemma

Let x, y, z in
$$\Omega$$
, then, $[(x, y) \rightarrow (z, x)] \Leftrightarrow [(x, z) \rightarrow (y, x)]$.
I.e., if there is a one time step transition between two

configurations, then, there is also a one time step transition between their symmetric configurations, but, in the opposite sense.

Corollary

Let
$$x^t$$
, y^t in Ω , $t \in \{0, ..., q\}$, $q \in \mathbb{N}$, then,

$$\left(x^{0},y^{0}
ight)
ightarrow\cdots
ightarrow\left(x^{q},y^{q}
ight)\Leftrightarrow\left(y^{q},x^{q}
ight)
ightarrow\cdots
ightarrow\left(y^{0},x^{0}
ight)$$

i.e., if there is a path Q_1 of length q, then, there is also a path Q_2 of length q between the symmetric configurations of Q_1 , but, in the opposite sense (maybe $Q_1 = Q_2$).

Remark

Since any configuration in the dynamic of Q2R belong to an attractor, there are two cases for the above paths Q_1 and Q_2 : both belong to the same limit cycle or each belong in a different one.

International Workshop on Boolean Networks (IWBN 2020) Universidad de Concepción, January 10, 2020 / slide 12

Transitions between configurations of type A, B, C and D

 $(x,x) \rightarrow (z,x)$ $(\Rightarrow \phi(z) = \mathbb{1} \lor \phi(z) \neq \mathbb{1})$

$$D = \left\{ (x, y) \in \Omega_{xy}^2 \mid \phi(x) \neq 1 \right\}$$

$$(x, y) \to (z, x)$$

$$(\Rightarrow z = x \lor z \neq x)$$

$$(z \neq x \Rightarrow \phi(z) = 1 \lor \phi(z) \neq 1)$$

$$D$$

$$D$$

$$B$$

$$C$$

$$D$$

Prop.: *A* is the set of fixed points of Q2R.

$$B = \left\{ (x, y) \in \Omega^2_{xy} \mid \phi(x) = \mathbb{1} \right\}$$

(x, y) \rightarrow (y, x)
($\Rightarrow \phi(y) = \mathbb{1} \lor \phi(y) \neq \mathbb{1}$)

Prop. 2:
$$(x, y) \in P_2 \Leftrightarrow [x \neq y] \land [\phi(x) = 1] \land [\phi(y) = 1]$$

International Workshop on Boolean Networks (IWBN 2020)

Remark

 $P_2 \subset B$. For instance, take the configuration $(1, x) \in B$ where x is composed by a 2×2 block of -1s surrounded by 1s, i.e.:

So, (1,x) → (x,1) → (x,x) → (1,x) is a limit cycle of length
3. Therefore, (1,x) ∉ P₂. Besides, this example shows that
|P₃| > 0, for all lattice size N = L × L, L ≥ 4, L even.

Prop. 3: Let
$$\{(x, y), (z, x), (y, z)\} \subset \Omega^2$$
 such that
 $(x, y) \rightarrow (z, x) \rightarrow (y, z)$. Then,
 $\{(x, y), (z, x), (y, z)\} \subseteq P_3 \Leftrightarrow \phi(x) \odot \phi(y) \odot \phi(z) = \mathbb{1}$

Scheme for a fixed point

 $(x, x) \in A$

Scheme for a length-2 limit cycle

Scheme for a length-3 limit cycle (symmetric)

Scheme for a length-3 limit cycle (asymmetric)

Corollary

- Let C be a limit cycle of Q2R with length 3 or higher. Then:
 - (i) C has at least one configuration of type D.
- (ii) C does not have transitions of type $A \rightarrow A$, nor $B \rightarrow B$ (notice that $C \rightarrow C$ does not exist) but it could have transitions of type $D \rightarrow D$.
- (iii) Any type D configuration comes from a type V configuration with $V \in \{B, C, D\}$.
- (iv) If C has a configuration $(x, y) \in B$, then $(x, y) \rightarrow (y, x) \in D$.

Theorem (classification of limit cycles in Q2R)

Let C be a limit cycle of Q2R with length $T \in \mathbb{N}$. Then C is of type S-I, S-II, S-III or AS, where:

- S-I (symmetric cycle of type I). If T = 1 or if there exists $p \in \mathbb{N}_0$ such that C has the topology of Figure (S-I), i.e., is symmetric with:

• An odd length T = 2(p+1) + 1.

• Only one configuration of type C, only one configuration of type B and (2p + 1) configurations of type D.

- S-II (symmetric cycle of type II). If there exists $p \in \mathbb{N}_0$ such that C has the topology of Figure (S-II), i.e., is symmetric with:

• An even length T = 2(p+2).

• Only two configurations of type C and 2(p+1) configurations of type D.

- S-III (symmetric cycle of type III). If T = 2 or if there exists $p \in \mathbb{N}_0$ such that C has the topology of Figure (S-III), i.e., is symmetric with:

• An even length T = 2(p+2).

• Only two type B configurations and 2(p+1) type D configurations.

- AS (asymmetric cycle). If there exists $p \in \mathbb{N} \setminus \{1\}$ such that C has the topology of one of the two cycles of Figure (AS), i.e., is asymmetric with:

• length T = p + 1 (it can be even or odd, depending on the value of p).

• All its configurations are of type *D*.

$$(y^{0}, x^{0}) \in B \qquad (x^{0}, y^{0}) \in D \qquad (y^{0}, x^{0}) \in D \qquad (x^{0}, y^{0}) \in D \qquad (y^{0}, x^{0}) \in D \qquad (x^{0}, y^{0}) \in D \qquad (y^{0}, x^{0}) \in D \qquad (x^{0}, y^{0}) \in D \qquad (y^{1}, x^{1}) \in D \qquad (x^{1}, y^{1}) \in D \qquad (y^{1}, x^{1}) \in D \qquad (x^{1}, y^{1}) \in D \qquad (y^{1}, x^{1}) \in D \qquad (x^{2}, x^{2}) \in C \qquad (S-II) \qquad (y^{2}, x^{2}) \in C \qquad (S-II) \qquad (y^{2}, x^{2}) \in D \qquad (y^{2}, y^{2}) \in D \qquad (y^{2}, y^$$

International Workshop on Boolean Networks (IWBN 2020)

Universidad de Concepción, January 10, 2020 / slide 18

Remark

Let C be a limit cycle of Q2R with length $T \in \mathbb{N}$ and $(x, y) \in C$;

- If T is odd, then C could be of type S-I or AS.
- If T is even, then C could be of type S-II, S-III or AS.
- If (x, y) ∈ B then; if C has other configuration (x', y') ∈ B, then C is of type S-III, otherwise, C is of type S-I.
- If (x, y) is self-symmetric (i.e., x = y), then, if C has other self-symmetric configuration (x', y'), then C is of type S-II, otherwise, C is of type S-I.
- The asymmetric limit cycles always appear in pairs (all the symmetric configurations of one limit cycle belongs in other limit cycle).
- (x, y) ∈ C (asymmetric) ⇒ (x, y) ∈ D ⇒ [x ≠ y] ∧ [φ(x) ≠ 1] (regardless the value of φ(y)) but, necessarily, φ(y) ≠ 1, i.e.: (x, y) ∈ C (asymmetric) ⇒ [x ≠ y] ∧ [φ(x) ≠ 1] ∧ [φ(y) ≠ 1]

The converse relation is not necessarily true.

Other results

Definition

•
$$\nu(T) \equiv |P_T|$$
 and $n(T) \equiv \frac{\nu(T)}{T}$

- We denote by $\nu_{\rm SI}(T)$, $\nu_{\rm SII}(T)$, $\nu_{\rm SIII}(T)$ and $\nu_{\rm AS}(T)$ as the number of configurations belonging to a limit cycle of length T and of type S-I, S-II, S-III and AS, respectively.
- Similarly, n_{SI}(T), n_{SII}(T), n_{SIII}(T) and n_{AS}(T) denote the number of limit cycles of length T and type S-I, S-II, S-III and AS, respectively.

Notice that:

$$\begin{split} \nu(T) &= \nu_{\mathrm{SI}}(T) + \nu_{\mathrm{SII}}(T) + \nu_{\mathrm{SIII}}(T) + \nu_{\mathrm{AS}}(T) \\ n(T) &= n_{\mathrm{SI}}(T) + n_{\mathrm{SII}}(T) + n_{\mathrm{SIII}}(T) + n_{\mathrm{AS}}(T) \\ n_q(T) &= \frac{\nu_q(T)}{T}, \quad \text{with } q \in \{\mathrm{SI}, \mathrm{SII}, \mathrm{SIII}, \mathrm{AS}\}. \end{split}$$

Proposition

$$\sum_{T\geq 1} \left(n_{\mathrm{SI}}(T) + 2n_{\mathrm{SII}}(T) \right) = |\Omega_{xx}^2| = 2^N.$$

Corollary

$$2^{N-1} < \sum_{T \ge 1} (n_{SI}(T) + n_{SII}(T)) < 2^{N}$$
.
I.e., the sum of the cycles of type S-I and S-II grows exponentially with N.

Proposition (Relation between fixed points and 2-length cycles)

 $\{(x,x),(y,y)\}\subseteq P_1\Leftrightarrow\{(x,y),(y,x)\}\subseteq P_2$

Corollary

Let $x \in \Omega$ such that $\phi(x) = 1$. Then, in the Q2R dynamics:

- (x,x) and (-x,-x) are two different fixed points, as well as;
- $(x, -x) \rightarrow (-x, x) \rightarrow (x, -x)$ is a cycle of length 2.

Corollary

 $|P_2| = |P_1|(|P_1| - 1).$

Staggered-states

Consider the following state $x \in \{-1,1\}^{16}$ and its corresponding state $\phi(x) \in \{-1,1\}^{16}$:

$$x = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \text{ and } \phi(x) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

- The values in the boxes of x correspond to the staggered-state x_B ∈ {−1,1}⁸ while the other values that are not in boxes correspond to x_W ∈ {−1,1}⁸.
- Similarly, the values in the boxes of $\phi(x)$ correspond to $\phi(x)_W$ and were obtained with the values of x_B .
- The other values, that are not in the boxes of φ(x), correspond to φ(x)_B and were obtained with the values of x_W.

- Notation: $(\cdot) \equiv [(\cdot)_B \uplus (\cdot)_W] \in \Omega$, e.g.; $x = x_B \uplus x_W$, $\phi(x) = \phi(x)_B \uplus \phi(x)_W$, etc.
- In particular, we define the **chessboard** states: $\mathbb{1}_{BW} \equiv [-\mathbb{1}_B] \uplus \mathbb{1}_W$ and $\mathbb{1}_{WB} \equiv -\mathbb{1}_{BW} = \mathbb{1}_B \uplus [-\mathbb{1}_W]$

Proposition

 $\forall L \text{ even, } 4 \leq |P_1| < |P_2|.$

Proof. Observe that $\phi(-1) = \phi(1) = \phi(1_{BW}) = \phi(1_{WB}) = 1$, so: $\{(1, 1), (-1, -1), (1_{BW}, 1_{BW}), (1_{WB}, 1_{WB})\} \subseteq P_1$

Proposition

 $\forall L \geq 4, |P_3| \geq 6N.$

Proof. Observe that $\{(\mathbb{1}, x), (x, \mathbb{1}), (x, x)\} \cup \{(-\mathbb{1}, -x), (-x, -\mathbb{1}), (-x, -x)\} \subseteq P_3$, where x is the state with a square of -1s.

Definition

We denote by B_1 and W_1 as the sets of staggered-states $x_B \in \Omega_B$ and $x_W \in \Omega_W$ without null neighborhoods, respectively. That is:

$$B_{\mathbb{1}} = \{ u \in \Omega_B : \exists x \in \Omega, [x_B = u] \land [\phi(x)_W = \mathbb{1}_W] \}$$
$$W_{\mathbb{1}} = \{ v \in \Omega_W : \exists x \in \Omega, [x_W = v] \land [\phi(x)_B = \mathbb{1}_B] \}$$

Observe that:

•
$$|B_{\mathbb{1}}| = |W_{\mathbb{1}}|$$
. We define $\beta \equiv |B_{\mathbb{1}}| = |W_{\mathbb{1}}|$.

•
$$P_1 = A = \{(x, y) \in \Omega^2_{xx} \mid \phi(x) = 1\}.$$

Proposition

The following statements are true:

1
$$\beta = 2k$$
, for some $k \in \mathbb{N}$.

2
$$|P_1| = |\{x \in \Omega \mid \phi(x) = 1\}| = |B_1| \cdot |W_1| = \beta^2 = 4k^2$$

$$|P_2| = 4k^2(4k^2 - 1).$$

General overview of the Q2R dynamics

Computations for small Q2R systems

The following Table shows the sizes of the different regions of Ω^2 for small Q2R systems.

label	variable	size	L = 4	L = 6	L = 8
[b]	N	L^2	16	36	64
[c]	$ \Omega^2 $	2^{2N}	$2^{32}\sim 4\cdot 10^9$	$2^{72}\sim4\cdot10^{21}$	$2^{128}\sim 3\cdot 10^{38}$
[d]	$ \Omega_{xx}^2 $	2 ^N	$2^{16} = 65536$	$2^{36} \sim 7 \cdot 10^{10}$	$2^{64} \sim 2 \cdot 10^{19}$
[e]	$ \Omega_{xy}^2 $	[c]-[d]	$\sim 4 \cdot 10^9 < [c]$	$\sim 4 \cdot 10^{21} < [c]$	$\sim 3\cdot 10^{38} < [c]$
[f]	Yellow	$ P_1 = \beta^2$	34 ²	584 ²	39426 ²
[g]	Orange	$ P_2 = [f]([f]-1)$	1335180	$\sim 10^9$	$\sim 2 \cdot 10^{18}$
[h]	Green	[d]-[f]	64380	$\sim 7\cdot 10^{10} < [d]$	$\sim 2\cdot 10^{19} < [d]$
[i]	Blue	[c]-([f]+[g]+[h])	$\sim 4 \cdot 10^9 <$ [e]	$\sim 4 \cdot 10^{21} < [e]$	$\sim 3\cdot 10^{38}$ <[e]

Cuadro: Summary of the sizes of the main regions of Ω^2 . The 1st column labels the values of the "size" column. The 2nd column has the variables and the main regions of Ω^2 . In the 3rd column are the size formulas for each "variable" of the 2nd column. In the 4th, 5th and 6th columns are the calculations done for $L \in \{4, 6, 8\}$, respectively.

Т	$\nu_{\rm SI}(T)$	$\nu_{\rm SII}(T)$	$\nu_{\rm SIII}(T)$	$\nu_{\rm AS}(T)$	$ P_T $
1	1,156	0	0	0	1,156
2	0	0	1,335,180	0	1,335,180
3	4,128	0	0	768	4,896
4	0	14,456	20,556,256	48,384,408	68,955,120
5	1,920	0	0	0	1,920
6	0	10,560	15,219,936	20,054,976	35,285,472
8	0	42,752	58,399,744	235,007,232	293,449,728
9	3,456	0	0	4,608	8,064
10	0	7,680	5,174,400	2,941,440	8,123,520
12	0	99,648	132,294,144	655,316,928	787,710,720
18	0	69,120	18,824,832	143,732,736	162,626,688
20	0	19,200	17,295,360	53,694,720	71,009,280
24	0	27,648	115,703,808	536,220,672	651,952,128
27	0	0	0	6,912	6,912
30	0	0	15,851,520	2,949,120	18,800,640
36	0	0	51,038,208	333,388,800	384,427,008
40	0	76,800	26,296,320	246,420,480	272,793,600
54	0	186,624	0	242,721,792	242,908,416
60	0	0	33,177,600	113,172,480	146,350,080
72	0	0	47,333,376	162,201,600	209,534,976
90	0	0	13,271,040	17,694,720	30,965,760
108	0	0	0	329,508,864	329,508,864
120	0	0	0	200,540,160	200,540,160
180	0	0	0	30,965,760	30,965,760
216	0	0	0	179,601,408	179,601,408
270	0	0	0	26,542,080	26,542,080
360	0	0	0	61,931,520	61,931,520
540	0	0	0	26,542,080	26,542,080
1080	0	0	0	53,084,160	53,084,160
Total	10,660	554,488	571,771,724	3,722,630,424	2 ³²

The 4 \times 4 case: distribution of the configurations of Ω^2

International Workshop on Boolean Networks (IWBN 2020)

Universidad de Concepción, January 10, 2020 / slide 28

Т	$n_{\rm SI}(T)$	$n_{\rm SII}(T)$	$n_{\rm SIII}(T)$	$n_{\rm AS}(T)$	n(T)
1	1,156	0	0	0	1,156
2	0	0	667,590	0	667,590
3	1,376	0	0	256	1,632
4	0	3614	5,139,064	12,096,102	17,238,780
5	384	0	0	0	384
6	0	1,760	2,536,656	3,342,496	5 ,880 ,912
8	0	5,344	7,299,968	29,375,904	36,681,216
9	384	0	0	512	896
10	0	768	517,440	294,144	812,352
12	0	8,304	11,024,512	54,609,744	65,642,560
18	0	3,840	1,045,824	7,985,152	9,034,816
20	0	960	864,768	2,684,736	3,550,464
24	0	1,152	4,820,992	22,342,528	27,164,672
27	0	0	0	256	256
30	0	0	528,384	98,304	626,688
36	0	0	1,417,728	9,260,800	10 ,678 ,528
40	0	1,920	657,408	6,160,512	6,819,840
54	0	3,456	0	4,494,848	4,498,304
60	0	0	552,960	1,886,208	2,439,168
72	0	0	657,408	2,252,800	2,910,208
90	0	0	147,456	196,608	344,064
108	0	0	0	3,051,008	3,051,008
120	0	0	0	1,671,168	1,671,168
180	0	0	0	172,032	172,032
216	0	0	0	831,488	831,488
270	0	0	0	98,304	98,304
360	0	0	0	172,032	172,032
540	0	0	0	49,152	49,152
1080	0	Ő	0	49,152	49,152
Total	3,300	31,118	37,878,158	163,176,246	201,088,822

The 4×4 case: distribution of the limit cycles of Q2R

International Workshop on Boolean Networks (IWBN 2020)

Universidad de Concepción, January 10, 2020 / slide 29

Discussion

- Essentially, all results showed follow after the first Lemma.
- A fully classification of all Q2R attractors in 4 types of cycles consisting of symmetric and asymmetric ones was proposed.
- A general overview of the Q2R dynamic has been provided.
- Some specific results for small length cycles were proposed. For instance:
 - The total number of fixed points is of the form $|P_1| = \beta^2 = 4k^2$, with $k \in \mathbb{N}$.
 - The number of configurations belonging in a 2-length cycle is $|P_2| = \beta^2 (\beta^2 1).$
 - Characterization of the limit cycles with length lower or equal to 3 and related combinatorial results.
- The simple mathematical tools like the functions $\mu(\cdot)$, $\phi(\cdot)$, the Hadamard product, etc., it allows a more direct understanding of the Q2R dynamics.
- **Open problem:** a mathematical expression for β .

THANK YOU !