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Machine learning:
supervised Iearnlng

I
|
|
I ¢
|
|
I
|
|
I

training

data
algorithm

{
|
|
|
|
l
|
|

Trainng T T T l

Running \ GeSthel /l

——————

Supervised learning

Problem Find the mapplng from X to Y

Input D = (x', y"), (%, yv?),....(x",y")
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Boolean networks

N = (G, F,r)
Input Output
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Threshold Boolean networks

 Updates of each node in the network are computed

Dy
i(t+ 1) (waxj z)

1, iftz>0
H(z)_{(), if 2z <0

* With wj the weight of the edge coming from node |
into node i, and 6; the activation threshold of node .
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Computational intelligence
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e Neural networks



Computational intelligence
approaches

 Evolutionary computation

e Neural networks

e Fuzzy logic



Evolutionary computation

Coding of solutions

Fitn function
Problem ithess functio

Evolutionary operators
Domain knowledge




Neural networks
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Application 1

Ruz, G.A., Goles, E., Sené, S. Reconstruction of Boolean regulatory models of flower
development exploiting an evolution strategy, The 2018 IEEE Congress on Evolutionary
Computation (IEEE CEC 2018), Rio de Janeiro, Brazil, July 8-13, 2018, pp. 1-8.
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Flower development

Wild type A C J A

se pe st ca \

[~ stamen
g
carpel A
—— petal
sepal B
o

L. Mendoza and E. R. Alvarez-Buylla, “Dynamics of the genetic regulatory network for arabidopsis
thaliana flower morphogenesis,” Journal of Theoretical Biology, vol. 193, pp. 307-319, 1998.

11



Original Mendoza &
Alvarez-Buylla network
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Attractors

Attractors Sequential Parallel tcyeglles
Fixed point 1 000100000000 000 100000000 Sep
Fixed point 2 000100010110 000100010110 Pet
Fixed point 3 000000001000 000000001000 Car
Fixed point 4 000000011110 000000011110 Sta
Fixed point 5 110000000000 1 10000000000 Inf
Fixed point 6 110000010110 110000010110 Mut

Limit cycle 1 - 000100010000 000100000110  None

Limit cycle 2 - 000000000000 000100001000  None
Limit cycle 3 - 000000010000 000100001110 None
Limit cycle 4 - 000000000110 000100011000 None
Limit cycle 5 - 000000010110 000100011110  None
Limit cycle 6 - 000000001110 000000011000  None
Limit cycle 7 - 110000000110 110000010000  None

Attractors of the original Mendoza & Alvarez-Buylla network dynamics for the
sequential and parallel iteration modes and the corresponding cell types. In the
descriptions of each configuration, genes are ordered as follows: enF1, TFL1, LFY,
AP1, CAL, LUG, UFO, BFU, AG, AP3, Fl, SUP.

doi:10.1371/journal.pone.0011793.t001

Demongeot J, Goles E, Morvan M, Noual M, Sene” S (2010)
Attraction Basins as Gauges of Robustness against Boundary
Conditions in Biological Complex Systems. PLoS ONE 5(8):

e11793.
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Reduced Mendoza &
AIvarez-BuyIIa network
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Attraction Basins as Gauges of Robustness against Boundary
Conditions in Biological Complex Systems. PLoS ONE 5(8):

e11793.
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Problem description

Reconstruction of synthetic gene regulatory networks of flower
development in Arabidopsis thaliana under the threshold Boolean network
formalism.

We use the Mendoza & Alvarez-Buylla network and the reduced model as
the starting point, employing an evolution strategy to find the different
network parameters (weight matrix and threshold vector) that yield synthetic
networks with the same attractors as the original model.

We analyze topological (wiring) and dynamical characteristics of the
resulting networks. Also, we are interested to see if networks with fewer
edges than the reduced model can be found.

Overall, the possibility to explore neighboring solutions around the original
and reduced model will allow us to shed light on how robust, in the sense of
the network structure, are these models.
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Evolution strategy flow chart to
search for synthetic networks
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Simulations

Simulation 1: Infer 1000 synthetic networks that contain only the six fixed
points of the original network. We use the original network as the seed to
generate candidate solutions. For the resulting networks, we will compute
the distribution of the total, positive, and negative number of edges.

Simulation 2: The same as Simulation 1, but now using the reduced
network as the seed.

Simulation 3: The same as Simulation 1, but now we will reconstruct
synthetic networks that have the first four fixed points of the original
network, that are associated to specific cell types of the flower: sepal,
petal, carpel, and stamen.

Simulation 4: The same as Simulation 3, but now using the reduced
model as the seed.

17



Results (simulations 1
and 2)
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Synthetic network found
with 18 edges (het18)

Contains only the
six fixed points of
the original
network
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Basin of attraction for the

sixX fixed points

Attractors Parallel original  Parallel reduced  Parallel netl8  BS original  BS reduced BS netl8  Cell types
Fixed point 1 163 168 540 1344 1344 1344 Sep
Fixed point 2 243 248 124 192 192 192 Pet
Fixed point 3 24 24 36 448 448 448 Car
Fixed point 4 8 8 4 64 64 64 Sta
Fixed point 5 384 g4 960 1792 1792 1792 [nf
Fixed point 6 384 g4 192 256 256 256 Mut
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Results (simulations 3
and 4)
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Synthetic network found
with 23 edges (nhet23)
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Synthetic network found
with 34 edges (net34)

Contains only the
first four fixed
points of the
original network,
with more evenly
distributed basin
of attraction per
fixed point
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Basin of attraction for the four
fixed points using net23 and net34

Attractors Parallel net23  BS net23  BS net34  Cell types
Fixed point | 504 3136 1184 Sep
Fixed point 2 616 448 864 Pet
Fixed point 3 24 448 1184 Car
Fixed point 4 8 64 864 Sta
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Synthetic network found
with 17 edges (het17)

Contains only the
first four fixed
points of the
original network
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Synthetic network found
with 27 edges (het27)
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Basin of attraction for the four
fixed points using net17 and net27

Attractors Parallel netl7  BS netl7  BS net27  Cell types

Fixed point 1 1260 2688 1024 Sep
Fixed point 2 140 384 1024 Pet
Fixed point 3 108 896 1024 Car
Fixed point 4 12 128 1024 Sta

29



Summary

e An EC approach can effectively reconstruct alternative
solutions based on existing gene regulatory models under
the threshold Boolean network paradigm.

e \We were able to find interesting solutions, such as
networks with fewer edges than the existing models.

e |t was found that in order to change the distribution of the
sizes of the basin of attractions, so that each fixed point
had more or less the same basin of attraction size, this
was achieved by increasing the complexity (humber of
edges) of the base models used.
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Application 2

Ruz, G.A, Ashlock, D., Ledger, T., Goles, E. Inferring bistable lac operon Boolean
regulatory networks using evolutionary computation. The 2017 IEEE Conference on
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2017),
Manchester, U.K., 23-25 August, 2017, pp. 1-8.
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Lac operon in . coli
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I'he reduced /ac operon
Boolean network moael

v = A. Veliz-Cuba, B. Stigler. Journal of
f . Computational Biology 18 (6)
L= (2011) 783-794.
fLm =



The dynamics



The dynamics

 Case 1: Ge¢ = 1. All configurations eventually reach the unique
steady state F1 = (0, 0, 0) (operon being OFF).
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The dynamics

 Case 1: Ge¢ = 1. All configurations eventually reach the unique
steady state F1 = (0, 0, 0) (operon being OFF).

* Case 2: Ge = Le = Lem = 0. All configurations eventually reach
the unique steady state F1 = (0, 0, 0) (operon being OFF).
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The dynamics

 Case 1: Ge¢ = 1. All configurations eventually reach the unique
steady state F1 = (0, 0, 0) (operon being OFF).

* Case 2: Ge = Le = Lem = 0. All configurations eventually reach
the unique steady state F1 = (0, 0, 0) (operon being OFF).

 Case 3: Ge = Le = 0 and Lem = 1. All configurations eventually
reach one of the two steady states; F1 = (0,0,0) or Fo = (1,0, 1)
(operon being OFF and ON, respectively). That is, the model is
bistable.
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The dynamics

Case 1: Gc = 1. All configurations eventually reach the unique
steady state F1 = (0, 0, 0) (operon being OFF).

Case 2: Gec = Le = Lem = 0. All configurations eventually reach
the unique steady state F1 = (0, 0, 0) (operon being OFF).

Case 3: Ge = Le = 0 and Lem = 1. All configurations eventually
reach one of the two steady states; F1 = (0,0,0) or Fo = (1,0, 1)
(operon being OFF and ON, respectively). That is, the model is
bistable.

Case 4: Gc = 0 and Le = Lem = 1. All configurations eventually
reach the unigue steady state Fz = (1, 1, 1) (operon being ON).
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Sate transition graphs of the
reduced /ac operon network
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Proplem description

* \We propose to use evolutionary computation (EC) to infer
bistable threshold Boolean regulatory networks, applied
to the reconstruction of the reduced /ac operon model.

« EC to be considered: differential evolution (DE), genetic
algorithm (GA), and particle swarm optimization (PSO).

o We will measure: the error of the inferred networks or
effectiveness, the average time to find a solution, the
average number of iterations, and topological
characteristics of the networks found, for each approach.
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Fitness function

* The proposed fitness function is the the total hit
rate error e of the network, defined by

e = €1+ 2+ e3+ €4

* where ¢ corresponds to the hit rate error of the
network for case i (for i=1...4).

37



Fitness function

* To compute ey for a given candidate solution (network), we used the
following procedure:

1) Starting from each configuration of the network, update the network k = 27
times, and record its final configuration.

2) Count how many of the final configurations equal to F1. Let my be the total
counts.

3) Then et is computed by
mq

nk

* For exthe same procedure is used, but considering the configuration of
the control parameters of case 2.

61:1
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Fitness function

e To compute ez we used the following procedure:

1) Starting from each configuration of the network, update the network k = 27 times,
and record its final configuration.

2) Count how many of the final configurations equal to F+, call this value mza. Count
how many of the final configurations equal to F2 call this value msp.

3) If msa = nk or msp = nkthen es = 0.5, else

* For e; we used the same procedure as ey, but considering the configuration of the
control parameters of case 4 and in 2) we considered the counts that equal to F3
(thus, obtaining my).
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Methods

S0, it's a minimization problem, where a correct solution is obtained when e = 0.
The simulations were carried out using the open-source R software environment

for statistical computing running on a 2.8 GHz Intel Core i7 and 8 GB-RAM
computer.

For DE, we used the function DEoptim, for GA we use the function ga, and for
PSO we used psoptim.

For each method we used a population of size 50, maximum iteration of 500,
and the search range for the network values (weights and thresholds) was set to
the real interval [-5;5].

Default values were considered for the user defined parameters for DE, GA, and
PSO.

We ran each algorithm 30 times.

40



Results: comparisons between DE,
GA, and PSO

Evo. Comp. Technique | Effectiveness | Avg.£=SD. execution time [s] | Avg.==SD. number of iterations
DE 100% 84.61+46.5 112.34£35.1
GA 07% 1099+111.8 191.9+196.1
PSO 90% 5154332 78.9450.9
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Evolutionary computation techniques
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Results: topology distributions of the inferred networks
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Example of an inferred
network
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Sate transition graphs for the four
cases of the inferred network
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summary

Simulations showed that the three evolutionary computation techniques were
capable of finding solutions being DE the most effective.

Solutions were found only defining very general parameters like the population
size, the maximum iterations, and the range of the values to look for.

We reported as an example, one of the networks inferred by DE, which
presented biologically meaningful characteristics.

Given the way the fithess function is constructed, no spurious limit cycles can
appear, in contrast to the original model.

Future results will consider exploring different parameter values of the
algorithms in order to reduce the variability (specially in GA) in the runtime and
number of iterations. Also we will consider working with the full ten node
network /ac operon model.
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Application 3

Ruz, G.A., Zuniga, A., Goles, E. A Boolean network model of bacterial quorum-sensing
systems, International Journal of Data Mining and Bioinformatics, Vol. 21, 2018,
123-144.
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Neural network approach for
regulatory network reconstruction

The learning algorithm for the perceptron is as follows
1 Initialise all the weights to zero (or a small random number)

Output, 2 TFor each &-th data point (training sample)

(a) Calculate the output value using (1)

(b) Update the weights using the following rule

wo=w, + r(Target" — Qutpui )x_",‘i

x(t+1)= H(Zn:w,,x,-(t)j (1)
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Perceptrons trained with the data of the
toy model (slide 4) and the resulting
threshold Boolean network model

0 X3

4 01 0 0
’@ ©=1[01 02 0]
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Proplem description

We will apply this neural network approach first to reconstruct the fission
yeast cell cycle network (Davidich and Bornholdt, 2008), and then to to

reconstruct a regulatory network model of QS systems in P. phytofirmans
PsJN.

The results will be compared with the networks inferred by an information
theoretic approach called REVEAL (Liang et al., 1998), which computes
mutual information between genes to identify relations between them,

and the Best-Fit extension algorithm (Lahdesmaki et al., 2003), which
performs an exhaustive search for regulatory genes considering all the
possible combinations for a target gene and finds the best solution
(function) that minimises the errors.

The implementations in the R package BoolNet (MuUssel et al., 2010) will
be considered.
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The fission yeast cell cycle
network

> Lx,.(t), if ;w,.jxj—ﬁ,. =0
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Temporal evolution of sate vectors
defining the fission yeast cell cycle

Cdc2/ Cdc2/ Weel/

Time Start SK Cdel3 Ste9 Ruml Sipl Cdi3*  Mikl Cdc25 PP  Phase
1 1 0 0 1 1 0 0 1 0 0  START
2 0 1 0 1 1 0 0 1 0 0 G,

3 0 0 0 0 0 0 0 1 0 0 G\/S
4 0 0 1 0 0 0 0 1 0 0 G,
5 0 0 1 0 0 0 0 0 1 0 G,
6 0 0 1 0 0 0 1 0 1 0 G./M
7 0 0 1 0 0 1 1 0 1 0 G,/M
8 0 0 0 0 0 1 0 0 1 1 M
9 0 0 0 1 1 0 0 1 0 1 M
10 0 0 0 1 1 0 0 1 0 0 G,
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lopology evaluation

Precision is defined as the fraction of correctly inferred
connections out of all the predictions

Recall is the fraction of inferred connections among the
true connections in YeastNet (original network)

Topology accuracy is the fraction of correct
predictions

Also, precision and recall can be combined in a single
measure known as the F-score (harmonic mean of the
precision and recall)
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The dynamics accuracy

* The dynamics accuracy (the fraction of correct
oredictions at the bit level) can be computed by

1023 10

Dynamics accuracy= ZZ[ YeastNet(i, j), InfNet (i, j))
1024 - 10, =
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Results

b

) . TS T ey
REVEAL Best-Fit Neural network
Method Precision Recall F-score Topology Dynamics
accuracy accuracy
" REVEAL 0.87 0.48 0.62 0.84 0.86
(san) Best-Fit 0.77 0.48 0.59 0.82 0.87
;L Necural nctworks 0.76 0.93 0.84 0.90 0.85
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Results (1)

The original model YeastNet has 13 attractors (12 fixed points and 1 limit cycle of
length 3). Of particular interest is the fixed point shown in the Table att = 10 which
corresponds to the value 100, in decimal representation, and that represents the
G1 phase in the cell cycle with the largest basin of attraction of 762 configurations.

For the network inferred by REVEAL, all the configurations converge to fixed point
100.

When using Best-Fit, the configurations converged to two fixed points: 1022
configurations converged to fixed point 100, and the remaining 2 states converged
to fixed point 36 (also present in YeastNet).

Using the neural network approach, the resulting network has eight fixed points,
with fixed point 100 having a basin of attraction of 977. The rest of the
configurations converge to the remaining seven fixed points, five of which are
present in YeastNet (fixed points: 36, 38, 68, 70, and 102), and two that are not
(fixed points: 4 and 6). None of the three inferred network presented limit cycles.
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Temporal evolution of sate vectors used to
reconstruct a regulatory network of
bacterial guorum-sensing systems

Time bpl.1 bpl.2 bpR.1 bpR.2 rsal
1 0 0 0 0 0
2 0 1 1 0 1
3 0 0 ] 0 0
4 1 0 ] 0 0
5 1 0 ] 0 ]
6 1 0 1 1 1
7 0 0 1 0 1
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Reconstruction of QS
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summary

 We have shown that threshold BNs can be inferred from data
using a neural network learning approach (perceptrons).

 An advantage in using the perceptron learning rule, in
problems of threshold nature of course, is the existence of
the perceptron convergence theorem (Bishop, 1995) which
states that the learning rule will find a solution in a finite
number of steps.

o Comparisons with the networks inferred using REVEAL and
Best- Fit, showed that our method resembled in a better way
the natural behaviour of bacteria population in terms of QS
systems activation.
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