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Threshold Boolean networks
• Updates of each node in the network are computed 

by 

• With ⍵ij the weight of the edge coming from node j 
into node i, and θi the activation threshold of node i.
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Threshold Boolean network 
version of the previous example
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Computational intelligence 
approaches 
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• Evolutionary computation

• Neural networks

• Fuzzy logic



Evolutionary computation
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Problem
Coding of solutions 
Fitness function 
Evolutionary operators 
Domain knowledge

Solution



Neural networks
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b

The Perceptron



Application 1 
Ruz, G.A., Goles, E., Sené, S. Reconstruction of Boolean regulatory models of flower 

development exploiting an evolution strategy, The 2018 IEEE Congress on Evolutionary 
Computation (IEEE CEC 2018), Rio de Janeiro, Brazil, July 8-13, 2018, pp. 1-8. 
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Flower development

L. Mendoza and E. R. Alvarez-Buylla, “Dynamics of the genetic regulatory network for arabidopsis 
thaliana flower morphogenesis,” Journal of Theoretical Biology, vol. 193, pp. 307–319, 1998.
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Original Mendoza & 
Alvarez-Buylla network 

LFY

TFL1
EMF1

AP1

AG

LUG

CAL

UFO

PI

BFU
SUP AP3

W =





EMF1 TFL1 LFY AP1 CAL LUG UFO BFU AG AP3 PI SUP
EMF1 1 0 0 0 0 0 0 0 0 0 0 0
TFL1 1 0 −2 0 0 0 0 0 0 0 0 0
LFY −2 −1 0 2 1 0 0 0 0 0 0 0
AP1 −1 0 5 0 0 0 0 0 −1 0 0 0
CAL 0 0 2 0 0 0 0 0 0 0 0 0
LUG 0 0 0 0 0 0 0 0 0 0 0 0
UFO 0 0 0 0 0 0 0 0 0 0 0 0
BFU 0 0 0 0 0 0 0 0 0 1 1 0
AG 0 −2 1 −2 0 −1 0 0 0 0 0 0
AP3 0 0 3 0 0 0 2 1 0 0 0 −2
PI 0 0 4 0 0 0 1 1 0 0 0 −1
SUP 0 0 0 0 0 0 0 0 0 0 0 0





Θ =





0
0
3
−1
1
0
0
1
−1
0
0
0





xi(t+ 1) = H

 
nX

j=1

wijxj(t)� ✓i

!

H(z) =

⇢
1, if z > 0
0, if z  0
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25 edges = 
15 positive edges + 
10 negative edges
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Attractors

Demongeot J, Goles E, Morvan M, Noual M, Sene ́ S (2010) 
Attraction Basins as Gauges of Robustness against Boundary 
Conditions in Biological Complex Systems. PLoS ONE 5(8): 
e11793.
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Reduced Mendoza & 
Alvarez-Buylla network

LFY

TFL1

EMF1

AP1AG

LUG

CAL

UFO

PI

BFU

SUP

AP3

W =





EMF1 TFL1 LFY AP1 CAL LUG UFO BFU AG AP3 PI SUP
EMF1 1 0 0 0 0 0 0 0 0 0 0 0
TFL1 1 0 −2 0 0 0 0 0 0 0 0 0
LFY 0 0 0 0 0 0 0 0 0 0 0 0
AP1 −2 0 5 0 0 0 0 0 −2 0 0 0
CAL 0 0 2 0 0 0 0 0 0 0 0 0
LUG 0 0 0 0 0 0 0 0 0 0 0 0
UFO 0 0 0 0 0 0 0 0 0 0 0 0
BFU 0 0 0 0 0 0 0 0 0 1 1 0
AG 0 −2 1 −2 0 −1 0 0 0 0 0 0
AP3 0 0 3 0 0 0 2 1 0 0 0 −2
PI 0 0 4 0 0 0 1 1 0 0 0 −1
SUP 0 0 0 0 0 0 0 0 0 0 0 0





Θ =





0
0
0
−2
1
0
0
1
−1
0
0
0





Demongeot J, Goles E, Morvan M, Noual M, Sene ́ S (2010) 
Attraction Basins as Gauges of Robustness against Boundary 
Conditions in Biological Complex Systems. PLoS ONE 5(8): 
e11793.
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21 edges = 
13 positive edges + 
8 negative edges



Problem description
• Reconstruction of synthetic gene regulatory networks of flower 

development in Arabidopsis thaliana under the threshold Boolean network 
formalism.


• We use the Mendoza & Alvarez-Buylla network and the reduced model as 
the starting point, employing an evolution strategy to find the different 
network parameters (weight matrix and threshold vector) that yield synthetic 
networks with the same attractors as the original model. 


• We analyze topological (wiring) and dynamical characteristics of the 
resulting networks. Also, we are interested to see if networks with fewer 
edges than the reduced model can be found. 


• Overall, the possibility to explore neighboring solutions around the original 
and reduced model will allow us to shed light on how robust, in the sense of 
the network structure, are these models.
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Evolution strategy flow chart to 
search for synthetic networks
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Simulations
• Simulation 1: Infer 1000 synthetic networks that contain only the six fixed 

points of the original network. We use the original network as the seed to 
generate candidate solutions. For the resulting networks, we will compute 
the distribution of the total, positive, and negative number of edges. 


• Simulation 2: The same as Simulation 1, but now using the reduced 
network as the seed. 


• Simulation 3: The same as Simulation 1, but now we will reconstruct 
synthetic networks that have the first four fixed points of the original 
network, that are associated to specific cell types of the flower: sepal, 
petal, carpel, and stamen.


• Simulation 4: The same as Simulation 3, but now using the reduced 
model as the seed.
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Results (simulations 1 
and 2)
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Edge distributions (6 FP)
Using the original 

network as the 
starting point

Using the reduced 
network as the 
starting point
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21 edges = 
13 positive edges + 

8 negative edges

25 edges = 
15 positive edges + 
10 negative edges



Synthetic network found 
with 18 edges (net18)
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BFU
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AP3

W =





EMF1 TFL1 LFY AP1 CAL LUG UFO BFU AG AP3 PI SUP
EMF1 1 0 0 0 0 0 0 0 0 0 0 0
TFL1 1 0 −2 0 0 0 0 0 0 0 0 0
LFY 0 0 0 0 0 0 0 0 0 0 0 0
AP1 −2 0 5 0 0 0 0 0 −2 0 0 0
CAL 0 0 0 0 0 0 0 0 0 0 0 0
LUG 0 0 0 0 0 0 0 0 0 0 0 0
UFO 0 0 0 0 0 0 0 0 0 0 0 0
BFU 0 0 0 0 0 0 0 0 0 1 1 0
AG 0 −2 1 −2 0 −1 0 0 0 0 0 0
AP3 0 0 0 0 0 0 2 1 0 0 0 −2
PI 0 0 4 0 0 0 0 1 0 0 0 −1
SUP 0 0 0 0 0 0 0 0 0 0 0 0





Θ =





0
0
0
−2
1
0
4
1
−1
0
0
0





Contains only the 
six fixed points of 

the original 
network  
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Using the reduced 
network as the 
starting point



Basin of attraction for the 
six fixed points 
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Results (simulations 3 
and 4)
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Edge distributions (4 FP)
Using the original 

network as the 
starting point

Using the reduced 
network as the 
starting point
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25 edges = 
15 positive edges + 
10 negative edges

21 edges = 
13 positive edges + 

8 negative edges



Synthetic network found 
with 23 edges (net23)

LFY

TFL1
EMF1

AP1

AG

LUG

CAL

UFO

PI

BFU
SUP AP3

W =





EMF1 TFL1 LFY AP1 CAL LUG UFO BFU AG AP3 PI SUP
EMF1 1 0 0 0 0 0 0 0 0 0 0 0
TFL1 1 0 −2 0 0 0 0 0 0 0 0 0
LFY −2 −1 0 2 0 0 0 0 0 0 0 0
AP1 −1 0 5 0 0 0 0 0 −1 0 0 0
CAL 0 0 2 0 0 0 0 0 0 0 0 0
LUG 0 0 0 0 0 0 0 0 0 0 0 0
UFO 0 0 0 0 0 0 0 0 0 0 0 0
BFU 0 0 0 0 0 0 0 0 0 1 1 0
AG 0 −2 0 −2 0 −1 0 0 0 0 0 0
AP3 0 0 3 0 0 0 2 1 0 0 0 −2
PI 0 0 4 0 0 0 1 1 0 0 0 −1
SUP 0 0 0 0 0 0 0 0 0 0 0 0





Θ =





3
0
3
−1
1
0
0
1
−1
0
0
0





Contains only the 
first four fixed 
points of the 

original network  
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Using the original 
network as the 
starting point



Synthetic network found 
with 34 edges (net34)

Contains only the 
first four fixed 
points of the 

original network, 
with more evenly 
distributed basin 
of attraction per 

fixed point

LFY

TFL1
EMF1

AP1

AG

LUG

CAL

UFO

PI

BFU
SUP AP3

W =





EMF1 TFL1 LFY AP1 CAL LUG UFO BFU AG AP3 PI SUP
EMF1 1 0 0 0 0 0 0 0 0 0 0 0
TFL1 1 0 −2 0 0 0 3 0 0 0 0 0
LFY −2 −1 0 2 1 0 0 0 0 0 0 0
AP1 −1 0 0 0 0 0 0 0 −1 0 0 0
CAL 0 1 0 −3 −4 0 0 0 −3 0 −3 0
LUG 3 0 0 0 0 0 0 −5 0 0 0 0
UFO 0 0 0 0 0 0 0 0 2 0 −4 0
BFU 0 3 0 0 0 0 0 0 0 1 1 0
AG 0 0 1 −4 0 −1 0 0 0 0 0 0
AP3 0 1 3 0 0 0 2 1 0 0 0 −2
PI 0 0 0 0 0 −1 0 1 0 0 0 −1
SUP 0 0 0 0 2 0 0 0 0 0 0 0





Θ =





3
1
3
−1
2
4
4
0
−4
0
0
1
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Using the original 
network as the 
starting point



Basin of attraction for the four 
fixed points using net23 and net34 
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Synthetic network found 
with 17 edges (net17)

Contains only the 
first four fixed 
points of the 

original network  

LFY

TFL1

EMF1

AP1AG

LUG

CAL

UFO

PI

BFU

SUP

AP3

W =





EMF1 TFL1 LFY AP1 CAL LUG UFO BFU AG AP3 PI SUP
EMF1 0 0 0 0 0 0 0 0 0 0 0 0
TFL1 1 0 −2 0 0 0 0 0 0 0 0 0
LFY 0 0 0 0 0 0 0 0 0 0 0 0
AP1 −2 0 5 0 0 0 0 0 −2 0 0 0
CAL 0 0 2 0 0 0 0 0 0 0 0 0
LUG 0 0 0 0 0 0 0 0 0 0 0 0
UFO 0 0 0 0 0 0 0 0 0 0 0 0
BFU 0 0 0 0 0 0 0 0 0 1 1 0
AG 0 −2 0 −2 0 −1 0 0 0 0 0 0
AP3 0 0 3 0 0 0 2 1 0 0 0 −2
PI 0 0 0 0 0 0 0 1 0 0 0 −1
SUP 0 0 0 0 0 0 0 0 0 0 0 0





Θ =





0
5
0
−2
1
0
0
1
−1
0
0
1
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Using the reduced 
network as the 
starting point



Synthetic network found 
with 27 edges (net27)

Contains only the 
first four fixed 
points of the 

original network, 
with evenly 

distributed basin 
of attraction per 

fixed point

LFY

TFL1

EMF1

AP1AG

LUG

CAL

UFO

PI

BFU

SUP

AP3

W =





EMF1 TFL1 LFY AP1 CAL LUG UFO BFU AG AP3 PI SUP
EMF1 1 0 −4 0 0 0 0 0 0 0 0 0
TFL1 1 0 −2 0 −3 0 0 0 0 0 0 0
LFY 0 0 0 0 0 0 0 0 0 −1 0 0
AP1 −2 0 0 0 −3 −1 0 0 −2 0 0 0
CAL 0 0 2 0 0 0 0 0 0 0 0 0
LUG 0 0 0 0 0 0 0 0 0 0 0 0
UFO 0 0 0 0 0 0 0 0 0 0 0 −5
BFU 0 0 0 0 0 0 0 0 0 1 1 0
AG 0 0 0 0 0 −1 0 0 5 0 0 0
AP3 0 0 3 0 −1 0 2 0 0 5 0 −2
PI 0 0 4 0 −2 0 1 1 0 3 0 −1
SUP 0 0 0 0 0 0 0 0 0 0 0 0





Θ =





1
0
4
−1
0
0
0
1
4
0
1
0
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Using the reduced 
network as the 
starting point



Basin of attraction for the four 
fixed points using net17 and net27 
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Summary
• An EC approach can effectively reconstruct alternative 

solutions based on existing gene regulatory models under 
the threshold Boolean network paradigm.


• We were able to find interesting solutions, such as 
networks with fewer edges than the existing models. 


• It was found that in order to change the distribution of the 
sizes of the basin of attractions, so that each fixed point 
had more or less the same basin of attraction size, this 
was achieved by increasing the complexity (number of 
edges) of the base models used.
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Application 2 
Ruz, G.A, Ashlock, D., Ledger, T., Goles, E. Inferring bistable lac operon Boolean 

regulatory networks using evolutionary computation. The 2017 IEEE Conference on 
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2017), 

Manchester, U.K., 23-25 August, 2017, pp. 1-8. 
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Lac operon in E. coli

ONOFF
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The reduced lac operon 
Boolean network model

fM = ¬Ge ∧ (L ∨ Lm)

fL = M ∧ Le ∧ ¬Ge

fLm = ((Lem ∧M) ∨ Le) ∧ ¬Ge

L

M

Lm

Ge Le

Lem

A. Veliz-Cuba, B. Stigler. Journal of 
Computational Biology 18 (6) 
(2011) 783-794. 
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The dynamics

34



The dynamics
• Case 1: Ge = 1. All configurations eventually reach the unique 

steady state F1 = (0, 0, 0) (operon being OFF). 
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The dynamics
• Case 1: Ge = 1. All configurations eventually reach the unique 

steady state F1 = (0, 0, 0) (operon being OFF). 

• Case 2: Ge = Le = Lem = 0. All configurations eventually reach 
the unique steady state F1 = (0, 0, 0) (operon being OFF).
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The dynamics
• Case 1: Ge = 1. All configurations eventually reach the unique 

steady state F1 = (0, 0, 0) (operon being OFF). 

• Case 2: Ge = Le = Lem = 0. All configurations eventually reach 
the unique steady state F1 = (0, 0, 0) (operon being OFF).

• Case 3: Ge = Le = 0 and Lem = 1. All configurations eventually 
reach one of the two steady states; F1 = (0,0,0) or F2 = (1, 0, 1) 
(operon being OFF and ON, respectively). That is, the model is 
bistable. 

34



The dynamics
• Case 1: Ge = 1. All configurations eventually reach the unique 

steady state F1 = (0, 0, 0) (operon being OFF). 

• Case 2: Ge = Le = Lem = 0. All configurations eventually reach 
the unique steady state F1 = (0, 0, 0) (operon being OFF).

• Case 3: Ge = Le = 0 and Lem = 1. All configurations eventually 
reach one of the two steady states; F1 = (0,0,0) or F2 = (1, 0, 1) 
(operon being OFF and ON, respectively). That is, the model is 
bistable. 

• Case 4: Ge = 0 and Le = Lem = 1. All configurations eventually 
reach the unique steady state F3 = (1, 1, 1) (operon being ON). 
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Sate transition graphs of the 
reduced lac operon network 
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Problem description
• We propose to use evolutionary computation (EC) to infer 

bistable threshold Boolean regulatory networks, applied 
to the reconstruction of the reduced lac operon model. 

• EC to be considered: differential evolution (DE), genetic 
algorithm (GA), and particle swarm optimization (PSO). 

• We will measure: the error of the inferred networks or 
effectiveness, the average time to find a solution, the 
average number of iterations, and topological 
characteristics of the networks found, for each approach.
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Fitness function

• The proposed fitness function is the the total hit 
rate error e of the network, defined by  

e = e1 + e2 + e3+ e4 

•  where ei corresponds to the hit rate error of the 
network for case i (for i = 1…4).
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Fitness function
• To compute e1 for a given candidate solution (network), we used the 

following procedure:  

1) Starting from each configuration of the network, update the network k = 2n 
times, and record its final configuration. 

2) Count how many of the final configurations equal to F1. Let m1 be the total 
counts.  

3) Then e1 is computed by 

• For e2 the same procedure is used, but considering the configuration of 
the control parameters of case 2. 

e1 = 1� m1

nk
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Fitness function
• To compute e3 we used the following procedure:  

1) Starting from each configuration of the network, update the network k = 2n times, 
and record its final configuration. 

2) Count how many of the final configurations equal to F1, call this value m3a. Count 
how many of the final configurations equal to F2, call this value m3b. 

3) If m3a = nk or m3b = nk then e3 = 0.5, else 

• For e4 we used the same procedure as e1, but considering the configuration of the 
control parameters of case 4 and in 2) we considered the counts that equal to F3 
(thus, obtaining m4). 

e3 = 1� (m3a +m3b)

nk
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Methods
• So, it’s a minimization problem, where a correct solution is obtained when e = 0.  

• The simulations were carried out using the open-source R software environment 
for statistical computing running on a 2.8 GHz Intel Core i7 and 8 GB-RAM 
computer.  

• For DE, we used the function DEoptim, for GA we use the function ga, and for 
PSO we used psoptim. 

• For each method we used a population of size 50, maximum iteration of 500, 
and the search range for the network values (weights and thresholds) was set to 
the real interval [-5;5].  

• Default values were considered for the user defined parameters for DE, GA, and 
PSO. 

• We ran each algorithm 30 times.
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Results: comparisons between DE, 
GA, and PSO
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Results: topology distributions of the inferred networks
DE GA PSO
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Example of an inferred 
network

fM = ¬Ge ∧ (L ∨ Lm)

fL = M ∧ Le ∧ ¬Ge

fLm = ((Lem ∧M) ∨ Le) ∧ ¬Ge

L

M

Lm

Ge Le

Lem

L

M

Lm

Ge Le

Lem

W =





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2 3
−3 4 3 −5 0 3
−3 2 1 2 3 0





Θ =
[
0 0 0 0.6 4.1 2.3

]

Original network Inferred network using DE
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Sate transition graphs for the four 
cases of the inferred network
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Summary
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Summary
• Simulations showed that the three evolutionary computation techniques were 

capable of finding solutions being DE the most effective. 
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Summary
• Simulations showed that the three evolutionary computation techniques were 

capable of finding solutions being DE the most effective. 

• Solutions were found only defining very general parameters like the population 
size, the maximum iterations, and the range of the values to look for. 

• We reported as an example, one of the networks inferred by DE, which 
presented biologically meaningful characteristics. 

• Given the way the fitness function is constructed, no spurious limit cycles can 
appear, in contrast to the original model. 

• Future results will consider exploring different parameter values of the 
algorithms in order to reduce the variability (specially in GA) in the runtime and 
number of iterations. Also we will consider working with the full ten node 
network lac operon model.
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Application 3 
Ruz, G.A., Zúñiga, A., Goles, E. A Boolean network model of bacterial quorum-sensing 

systems, International Journal of Data Mining and Bioinformatics, Vol. 21, 2018, 
123-144.
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Neural network approach for 
regulatory network reconstruction 

47
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Perceptrons trained with the data of the 
toy model (slide 4) and the resulting 

threshold Boolean network model
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Θ =
[
0.1 0.2 0

]

0

0

0

0

0

0



Problem description
• We will apply this neural network approach first to reconstruct the fission 

yeast cell cycle network (Davidich and Bornholdt, 2008), and then to to 
reconstruct a regulatory network model of QS systems in P. phytofirmans 
PsJN.  

• The results will be compared with the networks inferred by an information 
theoretic approach called REVEAL (Liang et al., 1998), which computes 
mutual information between genes to identify relations between them,  

• and the Best-Fit extension algorithm (Lahdesmaki et al., 2003), which 
performs an exhaustive search for regulatory genes considering all the 
possible combinations for a target gene and finds the best solution 
(function) that minimises the errors.  

• The implementations in the R package BoolNet (Müssel et al., 2010) will 
be considered.
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The fission yeast cell cycle 
network 
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Temporal evolution of sate vectors 
defining the fission yeast cell cycle 
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Topology evaluation
• Precision is defined as the fraction of correctly inferred 

connections out of all the predictions  

• Recall is the fraction of inferred connections among the 
true connections in YeastNet (original network)  

• Topology accuracy is the fraction of correct 
predictions  

• Also, precision and recall can be combined in a single 
measure known as the F-score (harmonic mean of the 
precision and recall)
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The dynamics accuracy
• The dynamics accuracy (the fraction of correct 

predictions at the bit level) can be computed by 
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Results

54

REVEAL Best-Fit Neural network

Original



Results (II)
• The original model YeastNet has 13 attractors (12 fixed points and 1 limit cycle of 

length 3). Of particular interest is the fixed point shown in the Table at t = 10 which 
corresponds to the value 100, in decimal representation, and that represents the 
G1 phase in the cell cycle with the largest basin of attraction of 762 configurations.  

• For the network inferred by REVEAL, all the configurations converge to fixed point 
100.  

• When using Best-Fit, the configurations converged to two fixed points: 1022 
configurations converged to fixed point 100, and the remaining 2 states converged 
to fixed point 36 (also present in YeastNet).  

• Using the neural network approach, the resulting network has eight fixed points, 
with fixed point 100 having a basin of attraction of 977. The rest of the 
configurations converge to the remaining seven fixed points, five of which are 
present in YeastNet (fixed points: 36, 38, 68, 70, and 102), and two that are not 
(fixed points: 4 and 6). None of the three inferred network presented limit cycles.
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Temporal evolution of sate vectors used to 
reconstruct a regulatory network of 
bacterial quorum-sensing systems
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Reconstruction of QS networks 
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Neural network Best-Fit REVEAL



Summary
• We have shown that threshold BNs can be inferred from data 

using a neural network learning approach (perceptrons).  

• An advantage in using the perceptron learning rule, in 
problems of threshold nature of course, is the existence of 
the perceptron convergence theorem (Bishop, 1995) which 
states that the learning rule will find a solution in a finite 
number of steps.  

• Comparisons with the networks inferred using REVEAL and 
Best- Fit, showed that our method resembled in a better way 
the natural behaviour of bacteria population in terms of QS 
systems activation.
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Thank you 
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